Rational Unified Process®
for Systems Engineering

RUP® SE1.0

A Rational Software White Paper
TP 165, 8/01

Rational

the software development company

Table o

f Contents

INTRODUCTION

BUSINESS MODELING

SYSTEM ARCHITECTURE

SYSTEM ARCHITECTURE DIAGRAMS

LOCALITY

RELATION TO 4+1 ARCHITECTURE MODEL

REQUIREMENTS ANALYSIS

DERIVED REQUIREMENTS

USE-CASE FLOWDOWN

SUPPLEMENTARY REQUIREMENTS FLOWDOWN

COMPONENT SPECIFICATION

SYSTEM DEVELOPMENT

PROJECT ORGANIZATION
CONCURRENT DESIGN AND IMPLEMENTATION
ITERATIVE DEVELOPMENT, INTEGRATION, AND TEST

CONCLUSION

11

11

11

12

20

20

22

22
24
24

25

The Rational Unified Process for Systems Engineering 1.0

Introduction

A system is an assemblage of components used by an enterprise to carry out a business purpose '. System components consist
of hardware, software, and workers. Systems are specified by the components, their attributes, and their relationships. The
problem of systems engineering is to design and implement a system that meets a broad set of requirements. Here is a partial
list:

e Function — support the system provides the users and other systems to enable them to carry out their role in
meeting the business need. Functional requirements should include the behavior the system exhibits as it
provides the functionality

e Usability — ease of access to system function

e Maintainability — ease of discovery, isolation, and removal of defects

e Extendability — ease of adding function

e Scalability — ability to support number of users, data items

¢ Reliability — probability of a correct system response, possibly including safety concerns

e Performance — expected response time of the system to a step in a use case under capacity loads
e Capacity — expected number of users, data items

e Supportability — ease of service in the field, including acceptable down time

e Manufacture, deployment cost

e Operational cost

Depending on circumstances, there might be other system requirements such as logistics support, security, and remote training
needs.

Some of these requirements are familiar to software development. Some cannot be addressed without hardware, software, and
worker considerations. Systems design requires that all three types of components be specified concurrently.

A systems developer may want to maintain a number of system configurations. These systems configurations would have
common architectures but different hardware or software deployments that meet different requirements tradeoffs such as
cost/performance.

The system problem then differs from the software-only problem in that systems engineering addresses a broader set of
requirements than are normally addressed in software efforts. Even so, it is important to note that almost all software
development efforts contain some elements of the system problem. Examples of software developments that have system
concerns include web-based applications, business applications, information technology integrations, and embedded software,
as well as defense and intelligence systems.

This paper introduces a derivative of the Rational Unified Process, or RUP,” that addresses the problem of system
specification, analysis, design, and development.

As a derivative of RUP, RUP SE consists of new artifacts as well as modifications of RUP disciplines and roles to support the
creation of those artifacts.

! Blanchard and Fabrycky, Systems Engineering and Analysis (Third Edition), Prentice Hall, 1998.
2 Kruchten, Philippe, The Rational Unified Process, An Introduction (Second Edition), Addison Wesley, 2000.

The Rational Unified Process for Systems Engineering 1.0

This paper provides an overview of:

e RUP principles that are maintained in RUP SE
e RUP SE requirements models
e The UML-based artifacts for system architecture modeling

e The workflows for creating the artifacts

RUP SE is delivered as a deployment package providing assistance to customers wishing to deploy RUP in Systems
Engineering projects. Contact the local Rational account team for more information.

Phases
Process Discip"nes Inception | Elabo ratlnn Construction Transition

Business Modeling ,ff———ﬁ—-u_ 1 q

Requirements :

Analysis & Design _ AR |

Implementation m—

Test ih~—~ i“’”*"*‘.‘”h
Deployment ' i i E"’fr;.&\
Supporting Workflows , , I '
Configuration Mgmt JE%#RE“E
Proj. Management IS SN Ef"“‘* :
Environment - I N B
Prehmmaryl lter | lter Her. | fer. ter. | Her.
teration(s) # #nl #h+2 #n | #nH
Iterations

Figure 1: The Rational Unified Process

The Rational Unified Process for Systems Engineering 1.0

RUP is shown in Figure 1. RUP SE follows RUP in these ways:

e Lifecycle — the four phases based on the team’s evolving understanding and development of the project details

e Disciplines — the main focus areas of effort carried out by the team in developing the system. While the project
team has systems engineers as members, there is no separate systems engineering discipline. Rather, the systems
engineers participate in RUP disciplines.

e [terations — RUP SE uses a series of system builds based on risk identification and mitigation. A key feature that
RUP SE inherits from RUP is a rejection of waterfall development and the use of iterated development.

e Use of UML for visual modeling — RUP SE includes a set of UML artifacts suitable for system architecture and
specification.

One key feature of RUP and RUP SE is that the development team consists of workers such as architects, developers, testers,
and others who concurrently evolve their particular artifacts. These workers do not hand off work to each other using a serial
approach. They work together throughout the effort, evolving levels of detail to address their areas of concern. In RUP SE,
this idea is carried forward, adding systems engineers to the mix. Their area of concern is the design and specification of the
hardware and system deployment to ensure that the overall system requirements are addressed.

In addition to adequacy of the software architecture to meet functional requirements, software architects are generally
concerned with:

e Usability — ease of accessing the system functionality

e Maintainability — ease of isolating and removing defects without introducing others

e Extendibility — ease of adding new functionality to an existing software product

e Besides functionality, systems engineers or designers usually address the following types of concerns:
e Availability/reliability — the likelihood that the system will be available and respond correctly to input
e Performance — responsiveness of the system to some input

e Capacity — the number of items such as users or data records that the system can handle

e Scalability — the ease of increasing capacity

e Supportability — the ease of providing support in the field. Supportability can include installing the system and
applying patches.

Other domain-specific systems engineering concerns include security, ease of training, and logistics support.
RUP SE provides the artifacts for addressing these concerns and the workflows for evolving their detailed specification.

Business Modeling

Following Blanchard and Fabrycki’s definition, it is important when architecting a system to understand the business purpose
it serves. It is not surprising that understanding and modeling the business that will use the system is crucial to RUP SE or any
other systems engineering process. The system requirements rely on a solid understanding of the business activities.

The Rational Unified Process for Systems Engineering 1.0

RUP SE does not include changes to the business modeling discipline. However, for the business model to provide adequate
information to support the determination of system requirements, it should include business use cases' with the associated
identification of business actors and flow of events. These flows of events can be swimlane activity diagrams that show how
the entities of the business collaborate to carry out the use case.

System Architecture

There are two dimensions to system architecture:

e Viewpoint — the context for addressing a limited set of quality concerns

e Model level - UML models that capture various levels of design specificity

The different viewpoints allow for separation of concerns. Table 1 outlines viewpoints and associated concerns. The
viewpoints align with those found in ISO standard ISO/IEC 10746-1: Reference Model — Open Distributed Processing (RM-
ODP)’. The framework provides a set of viewpoints as expressed in Table 1.

Viewpoint Expresses Concern
Enterprise Business activities supported by the system | Business context of system is adequately
understood to support system
specification.
Computation Logical decomposition of the system as a System functionality is adequate to realize
set of class objects/subsystems use cases.

System is extendible and maintainable.
Internal reuse
Good cohesion and connectivity

Engineering Mechanisms to support distribution of System physical characteristics are
functionality adequate to host functionality and meet
supplementary requirements.
Information Data managed by the system System has sufficient capacity to store
data.

System has sufficient throughput to
provide timely access to the data.

Process Threads of control, which carry out the System has sufficient partitioning of
computation elements processing to support concurrency and
reliability needs.

Table 1: Common System Architecture Viewpoints

The viewpoints in Table 1 are some of the most common for software-intensive systems. Many system architectures also
require additional, domain-specific viewpoints. Examples include safety, security, and mechanical viewpoints.

Viewpoints represent different areas of concern that must be addressed in the system architecture and design. If there are
system stakeholders or experts whose concerns are important to the overall architecture, there is likely to be a need for a set of
viewpoint artifacts to capture their design decisions.

! Several good texts provide more information on business use cases. See Writing Effective Use Cases by Alistair Cockburn (Addison
Wesley, 2001) or Enterprise Modeling with UML by Chris Marshall (Addison Wesley, 2000).

2 Putman, Janis, Architecting with RM-ODP, Prentice Hall, 2001.

The Rational Unified Process for Systems Engineering 1.0

It is important to build a system architecture team with staff who are competent to look after the various viewpoints. The team
might consist of business analysts and users who take primary responsibility for the enterprise viewpoint, software architects
who attend to the computation viewpoint, and engineers who concern themselves with the engineering viewpoint, as well as
experts on domain-specific viewpoints.

In addition to viewpoints, a system architecture exercise requires levels of specification. As the architecture is developed, it
evolves from a general, low-detail specification to a more specific, detailed specification. Following the Rational Unified
Process, there are three architectural levels, which are described in Table 2.

Model Level Expresses
Business e The work of the business that the system supports

e The partitioning of the enterprise into the system and its context

Analysis Initial partitioning of the system to establish the conceptual approach
Design Realization of the analysis model to hardware, software, and people
Implementation Realization of the design model into specific configurations

Table 2: Architectural Levels

Through these levels, the design goes from the abstract to the physical. The business provides the context of the system and
the efforts it supports. At the analysis level, the partitions do not reflect choices of hardware, software, and people. Instead,
they reflect design approaches for dividing up what the system needs to do and how the effort should be distributed. At the
design level, the decisions are made as to the sorts of hardware and software components and worker roles that are needed. At
the implementation level, specific choices of hardware and software technology are made to implement the design. For
example, at the design level, a data server may be specified. At the implementation level, the decision is made to use a
specific platform running a specific database application.

System Architecture Diagrams

The system architecture then is captured in a set of diagrams that express the architecture from various viewpoints and levels.
As shown in Table 3, there is not a diagram for every viewpoint-level combination. At the implementation level, a single
diagram captures the realization of hardware and software components for each system configuration.

The Rational Unified Process for Systems Engineering 1.0

Viewpoints
Models
Enterprise Computation | Information Engineering Process
Business e UML e Enterprise e Enterprise
organization object model data model
model
System context
diagram
Analysis e Subsystem e System data | e Locality e Process
diagram model diagram diagram
Design ¢ Business e Subsystem e System data | e Descriptor ¢ Detailed
Worker class model schema node diagram process
Survey
e Software
component
model
Implementation | ¢ Worker ¢ Configurations: deployment diagram with software system
Instructions components

Table 3: Static System Architecture Views

Almost all the artifacts specified in Table 3 are standard UML diagrams. For example, in the analysis level of the

computational viewpoint, the system is decomposed in UML as subsystems that collaborate to meet user requirements. In
RUP SE, subsystems are defined as in The Unified Modeling Language Reference Manual'. These subsystems, in turn, are
decomposed into either subsystems or classes. The design level of the computational view is the detailed class model.

Figure 2 is a subsystem diagram for a click-and-mortar retail system.

The Business Worker Survey is a current RUP artifact. Note that the worker instructions can be derived using the flow-down

technique discussed below

! Rumbaugh, James, Grady Booch and Ivar Jacobson, The Unified Modeling Language Reference Manual, Addison Wesley, 1999, page

458.

The Rational Unified Process for Systems Engineering 1.0

<<subsysta .. Z<zubsysta. .. 2<zubsystem s> <Zsubsystem==
Accounting Foint of Sale Web e-commerce Inventory Management
Inteface Interface Interface Interface
' — ;I_‘ = :
E = <zubsystem: > <2zubsystemz > .:
. Credit Card b Order) <2subsystemn == '
E Senices Frocessing T ----= Fulfillment .
! = - Services :
— : W
sasubsystem>> ' g PET————
Acc-:-uruting BT - - m o e e oo eemeaoo) N Imventany Confral
Senvices 1

<<subsystemn=> =

Femsistance
Senrices

Figure 2: Example Subsystem Model

The process model is also standard UML'. Figure 3 shows an example.

The domain-specific viewpoints should also have artifacts in place for one or more of the levels. The set of project artifacts,
within this framework, should be a part of the project development case.

! Booch, Grady, James Rumbaugh and Ivar Jacobson, The Unified Modeling Language User Guide, Addison Wesley, 1999, page 455.

The Rational Unified Process for Systems Engineering 1.0

<<Procesgz>

<<Processz> Web Applet
Terminal

<<Process>>
Sales Processing

<<Processe>
Store Accounting
<<Processs»
Fullfilrment /
<=Processe>

Store
Database
“<Processsx
Central Accounting
<<Process>> /

Central Office DB

Figure 3: Sample Process Model

Locality

UML support for the engineering viewpoint (Table 1) is more problematic. UML does provide design level artifacts to
capture engineering decisions in the descriptor version of the deployment diagram. The deployment diagrams are meant to
capture configurations, actual choices of hardware and software, and to provide a basis for system analysis and design,
serving as an implementation level in the technology viewpoint. The UML Reference Manual describes a deployment diagram
as “a d}agram that shows the configuration of run-time processing nodes and component instances and objects that live in
them.”

As shown in Table 3, RUP SE uses an analysis level, engineering viewpoint diagram called Locality. In the engineering
viewpoint, the system is decomposed into elements by which host the processing. Locality diagrams are the most abstract
expression of this decomposition. They express notionally where processing occurs without tying the processing locality to a
specific geographic location or even the realization of the processing capability as kinds of hardware. That level of detail is
captured in the design model. For example, a locality view might show that the system enables processing on a space satellite
and a ground station. The processing hosted at each locality is an important design consideration. Figures 4 and 5 provide
other examples.

The locality diagrams show the initial partitioning, how the system processing elements are distributed, and how they are
connected. Locality of computing is an issue when considering primarily non-functional requirements. For many systems
engineers, this is “the architecture.” Sometimes the elements of this view are nodes.

! Rumbaugh et al., Op. cit., page 252ff.

The Rational Unified Process for Systems Engineering 1.0

Locality diagrams consist of two elements:

e Localities — a collection of computing and storage resources that can host processing

e Connections — information paths between the localities

The semantics of the locality diagrams are similar to those of deployment diagrams. Localities are stereotyped UML nodes.
Recall that UML nodes are classifiers that have processing ability and memory'. As such, they may be stereotyped and tagged
values may be applied. Localities are stereotyped nodes. Their icon is a rounded cube (see Figures 2 and 3).

Localities may be realized as a hardware platform or a group of workers communicating via fax. They have characteristics
specified by tagged values.

Localities have two sets of tags:

e Quality: reliability, availability, performance, capacity, and so on

e Management: cost, technical risk

These locality characteristics form a nominal set. Each development team should determine the best set of characteristics for
their project. This determination could be a development case specification activity.

Locality characteristics are set to meet their derived requirements. There is a subtle difference between characteristics and
requirements. For example, for good engineering reasons, you might specify a locality that exceeds requirements.

A locality is notionally where processing occurs. What processing occurs at the locality is specified by the subsystem use
cases hosted on the localities, determined by the flowdown process discussed below. Each locality is a candidate for providing
or hosting a set of logical subsystem use cases. Localities can participate in dialogs in much the same way as logical
components.

Localities are related by connections, which are the mechanisms for information passing. Connections are stereotyped
associations with tagged values, again capturing characteristics. Nominal connection tags are:

e Throughput: data rate, supported protocols

e Management: cost, technical risk

In the design model, localities may be realized as one or more processor nodes, or more than one locality may be realized as
a single node.

Figures 4 and 5 are locality diagrams that document different engineering approaches to a click-and-mortar enterprise. The
enterprise has a number of retail stores, central warehouses, and a web presence. In the first solution (Figure 4), there is
processing capability in the stores. In the second solution (Figure 5), all the terminals are connected directly to a central office
processor. In each case, characteristics can be set of the localities that are required to realize the design. These days, most
people would agree that Figure 4 is a better design. However, the solution in Figure 5 may be superior in a few years.

! Rumbaugh et al., Op. cit., page 358.

The Rational Unified Process for Systems Engineering 1.0

=sConnestion>=

Un

1.0
=<Conhection>>
Ny eGP
s<Connection=»

COPF to 8GF
e-Com debssor
=sConnection=»

Central

FRIDeCh

==Connegtions=

==Conhection=>
A ich COR

eCRigecT

Locality Design 1

Figure 4: Locality Diagram, Example 1

T T
Store Termirial 2
Online Inte
— @del 1
1. 1
.n

=<Connection>>

=<Confection>>
A nEP

CredityCard Gayg ay <<Connection>>
QOP2 o COG 1
(fram Lgcality higfdel 1)
<<Connections>
ral Gffice F‘rn

55002 copo i £P

<<Connection>>
CORP2 to FP

~Commerce Pradessor

(fram Ly cality hodel 1)
<<Conngction==

M to COP2
<<Connegtions>
eCTtdeCr

e-Cofnmerce Tdrm
(frorn Ly cality hddel 1)

Locality Design 2

Figure 5 Locality Diagram, Example 2

10

The Rational Unified Process for Systems Engineering 1.0

Relation to 4+1 Architecture Model

The viewpoints and models, along with the use of derived requirements discussed in the following section, are consistent with
the 4+1 architecture framework (Figure 6) and model levels currently documented in RUP'. In particular, the engineering
viewpoint is a generalization of the 4+1 deployment view, and the computation viewpoint is a generalization of the 4+1 view.

End User Programmers
Functionality Software Management
Logical Implementation
View View
Analysts/Testers [L leer
Behavior View
Process Deployment
View View
System Integrators System Engineering
Performance System Topology
Scalability Delivery, Installation
Throughput Communication

Fiaure 6. RUP 4+1 Architecture Framework

Requirements Analysis

Following UML and RUP, there are two types of system requirements in RUP SE:

e Use cases — services provided by the system to its actors. Use cases capture the system functional requirements
and may have associated performance requirements. An actor is any external entity that interacts with the
system. Typically, actors are users or other systems.

e Supplementary — nonfunctional requirements such as reliability and capacity

Derived Requirements

In RUP SE, a distinction is made between allocated and derived requirements. A requirement is allocated if a system
requirement is assigned to an architectural element. A requirement is derived if it is determined by studying how the
architectural element collaborates with others to meet a system requirement.

! Kruchten, Op. cit.

11

The Rational Unified Process for Systems Engineering 1.0

The use of derived requirements for subsystems collaborating to carry out use cases is called logical decomposition.
Similarly, determining subsystem by allocation is functional decomposition. Generally, logical decomposition is essential for
quality systems.

One aspect of the systems problem is to specify a set of system use cases and supplementary requirements that, if met, would
provide for a system that meets its business purpose. It follows that the system requirements are derived from an
understanding of the business model. The system architectural elements in the analysis model are subsystems, localities, and
processes, as described earlier. In the requirements analysis discipline, requirements for each of these types of elements are
determined.

There is a process pattern for deriving requirements for architectural elements:

e Determine the requirements for a given model.
e Decompose that model into elements, assigning roles and responsibilities to the elements

e Study how the elements collaborate to carry out the model requirements. This usually involves some form of
collaboration diagram.

e Synthesize the analysis of the collaboration to determine the requirements for the elements.

This pattern is well known' 2. It is particularly interesting that Friedenthal et al. in their Object Oriented System Engineering
Method (OOSEM) also adopted the pattern’.

For example, with the business model in place, the RUP SE method for deriving system requirements is by partitioning the
enterprise into the system and its actors. Then how the system and its actors collaborate to meet the business requirements is

studied to determine the system requirements.

The following sections describe the application of this pattern for deriving requirements to the elements of the analysis model.
The same method, with little modification, can be applied to determine system requirements from business requirements.

Use-Case Flowdown

Use-case flow down is the activity for deriving functional requirements for the analysis elements. The outcomes of the activity
are:

e Use-case survey for subsystems
e Survey of hosted subsystem use cases for localities

e Survey of realized subsystem use cases for processes

The activity begins with the standard RUP activity of choosing an architecturally significantly set of use cases. For each
chosen use case, the flow of events is developed. This is the description of the interactions between the system actors and the
system. The system responses are black box; the descriptions make no reference to the architectural elements.

Table 4 shows an example flow of events for making a sale in a retail store. Black box steps have associated performance
requirements.

! Cockburn, Op. cit.
2 Putman, Op. cit.

3 Friedenthal, Sanford, et al., “Adapting UML for an Object-Oriented Systems Engineering Method,” Proceedings of the 2000 INCOSE
Symposium.

12

The Rational Unified Process for Systems Engineering 1.0

card.

validates the credit card, and, if it is
valid,

Prints out a receipt,

Updates the inventory,

Sends the transaction to accounting,
And clears the terminal.

Black Box Budgeted
Step | Actor Action Black Box Requirements
1 This use case begins when the | The system brings up new sale clerk and | Total response time is
Clerk pushes the New Sale customers screens and enables the 0.5 second.
button. scanner.
2 The Clerk scans the items and | For each scanned item, the system Total response time is
enters the quantity on the displays the name and price. 0.5 second.
keyboard.
3 The Clerk pushes the Total The system computes and displays on Total response time is
button. the screen the total of the item prices and | 0.5 second.
the sales taxes.
4 The Clerk swipes the credit This use case ends when the system Total response time is

0.5 second.

If the credit card is not valid, the system
Returns a rejected message.

Total response time is
0.5 second.

The next steps are also standard RUP: Apply OOAD to determine the subsystem and process models. Table 4 is a flow for a
use case for a click-and-mortar retail system. In this example, following RUP, the subsystem and process diagrams for the

Table 4 Example Black Box Flow of Events

system are shown in Figures 2 and 3.

The next steps are a departure from the current RUP activity. With initial subsystem, locality, and process diagrams in place,
the team revisits the flow of events by specifying how the analysis elements participate in carrying out the use case. Because
this version of the flow of events refers to design elements, it is the white box view. Table 5 shows an example white box flow

for the example system using locality model 1 (Figure 5).

e Subsystem white box steps — how the subsystems collaborate to carry out each black box step

e White box budgeted requirements — budgeting of the black box performance requirements to the white box steps

e Locality — which locality hosts each white box step

e Process — which process executes the white box step

The following information is added to each black step, as shown in Table 5:

Note if a white box step requires more than one hosting locality or executing process, the step should be broken into smaller

steps so that each step can be associated uniquely with a locality and a process.

13

The Rational Unified Process for Systems Engineering 1.0

and taxable
status for the
scanned
data.

Black Box White Box
Actor Black Budgeted Subsystem | Budgeted
Step | Action Box Requirements | White Box | Requirements | Locality Process
1 This use The Total response | The Point- 1/6 second Point-of- | Terminal
case system time is 0.5 of-Sale Sale
begins brings up | second. Interface Terminal
when the the a new clears the
Clerk sale transaction,
pushes the | Clerk brings up
New Sale screen new sales
button and screens, and
Customer requests that
screen, Order
and Processing
enables start a sales
the list.
scanner. Order 1/6 second Store Sales
Processing Processor | Processing
starts a sales
list.
Point-of- 1/6 second Point-of- | Terminal
Sale Sale
Interface Terminal
enables the
scanner.
2 The Clerk | Foreach | Total response | The Point- 1/8 second Point-of- | Terminal
scans the scanned time is 0.5 of-Sale Sale
items and item, the | second. Interface Terminal
enters the | system captures the
quantity displays bar from the
on the the name scanner.
keyboard. | and The Point-
price. of-Sale
Interface
requests that
Order
Processing
retrieve the
name, price,
and taxable
status for the
scanned
data.
Order 1/8 second Store Sales
Processing Processor | Processing
retrieves the
name, price,

14

The Rational Unified Process for Systems Engineering 1.0

Step

Actor
Action

Black
Box

Black Box
Budgeted

Requirements

Subsystem
White Box

White Box
Budgeted
Requirements

Locality

Process

Order
Processing
adds the
item to the
sales list.

1/8 second

Store
Processor

Sales
Processing

The Point-
of-Sale
Interface
displays the
item name,
price,
quantity,
and item
total on the
clerk and
customer
screens.

1/8 second

Point-of-
Sale
Terminal

Terminal

The Clerk
pushes the
Total
button.

The
system
computes
the total
price of
the items
and sales
taxes and
displays
the total
on the
screen.

Total response

time is 0.5
second.

The Point-
of-Sale
Interface
requests that
Order
Processing
sum the
price and
compute the
taxes.

1/6 sec.

Point-of-
Sale
Terminal

Terminal

Order
Processing
sums the
price and
computes
the taxes.

1/6 sec.

Store
Processor

Sales
Processing

The Point-
of-Sale
Interface
displays the
totals.

1/6 sec.

Point-of-
Sale
Terminal

Terminal

15

The Rational Unified Process for Systems Engineering 1.0

Step

Actor
Action

Black
Box

Black Box
Budgeted

Requirements

Subsystem
White Box

White Box
Budgeted

Requirements

Locality

Process

The Clerk
swipes the
customer

credit card

The
system
validates
the card,
prints
two
copies of
the credit
card
receipt
and
closes
out the
sale

30 seconds

The Point-
of-Sale
Interface
reads the
credit card
data and
request that
that Credit
Card
Services
validate the
sales

.5 sec

Point-of-
Sale
Terminal

Sales
Processing

Credit
Card
Services
requests
validation
through
Credit
Card
Gateway
for the given
card number
and amount.

28 sec

Store
Processor

Sales
Processing

If valid, the
Point-of-
Sale
Interface
prints a
receipt for
signature.

1 sec

Point-of-
Sale
Terminal

Terminal

The Point-
of-Sale
Interface
requests that
Order
Processing
complete the
sale.

1/6 sec

Point-of-
Sale
Terminal

Terminal

Order
Processing
requests that
Inventory
Control
remove the
items from
inventory.

1/6 sec

Store
Processor

Sales
Processing

16

The Rational Unified Process for Systems Engineering 1.0

Black Box White Box
Actor Black Budgeted Subsystem | Budgeted
Step | Action Box Requirements | White Box | Requirements | Locality Process
Inventory 1/6 sec Store Store
Control Processor | Accounting
removes the
items from
inventory.
Order 1/6 sec Store Sales
Processing Processor | Processing
requests that
Accounting
Services
post the
transaction.
Accounting | 1/6 sec. Central Central
Services Office Accounting
updates the Processor
account.

Table 5: Example White Box Flow of Events

The assignment of white box steps to subsystems, localities, and processes involves a set of design decisions. Each decision
adds detail to the role that each analysis element plays in the overall system design. In the process of making the assignments,
the team may decide to refactor the design, shifting responsibilities from one element to another within a given diagram.

The next step is to determine the subsystem use cases. This is done by sorting the white box steps by subsystem. For each
subsystem, the white box steps are sorted and aggregated by similarity. The result of this process is a survey of use cases for
each subsystem. An example subsystem use case survey is shown in Table 6. It includes the hosting localities and executing
process for each subsystem use case.

System
Subsystem Use Case
Use Case Description Locality Process Name White Box Text
Initiate Sales | The subsystem Store Sales Enter a Order Processing starts a
List initiates a list of Processor processing | sale sales list.
items to be included | e-commerce Enter The e-commerce interface
in the sales server li ts Order
transaction. oniine requests . .
sale Processing to instantiate
an ordering list and add
the item to the list.
Add Product | The subsystem adds | Store Sales Enter a The scanner data is sent to
Data an item to a sales list | Processor processing | sale Order Processing.
when requested by e-commerce Order Processing
the actor. server retrieves the name, price,
and taxable status from
Inventory and updates the
list.
Enter The E-Commerce
online Interface requests Order
sale Processing to instantiate
an ordering list and add
the item to the list.

17

The Rational Unified Process for Systems Engineering 1.0

Compute Store Sales Enter a Order Processing sums
Total Processor processing | sale the price and computes
e-commerce the taxes.
server
Check e-commerce | Sales Enter Order Processing
Availability server processing | online requests availability status
sale of all items from
Inventory Control.
Complete Store Sales Enter a When Order Processing
Sale Processor processing | sale receives a valid sale, it

returns Valid status to the
Point-of-Sale Interface.
Order Processing sends a
request to Inventory
Control to remove the
items from inventory.
Order Processing sends
the transaction to
Accounting Services for
posting.

Table 6 Example Subsystem Use Case Survey
Once the subsystem use-case surveys are created, the set of subsystem use cases may be sorted by locality or by process.
Sorting results:
The survey of hosted use cases for each locality expresses what computing occurs at the locality as well as the associated
performance requirements. This information provides input to the specification of the physical components that will be
deployed at the locality. Similarly, the survey of executed use cases for each process serves as input to the specification of

software components. Specification of the components is described more fully in the next section.

For various reasons, it is important to maintain traceability between the system and subsystem use cases. This traceability,
generally an m-to-n relationship, is best maintained in a requirements management tool such as RequisitePro.

The textual description in the white box flow of events can also be expressed as a set of sequence or collaboration diagrams.

These diagrams convey the traffic between analysis elements:

e For each locality, create a survey of hosted use cases

e For each process, create a survey of executed use case

Each diagram is a sequence diagram whose objects are proxy diagram elements. The messages are invocations of the
subsystem use cases. Figures 7 and 8 show the subsystem and locality interaction diagrams for the flow of events in Table 5.

18

The Rational Unified Process for Systems Engineering 1.0

- Paint nf - - . - Credit
Processi Manacem Servin Servin
- Qales
New
Initiate Sales
Nisnlav
Sean

Send Secan

Get Product

lindate

Disnlav 5
ot p—

Comniite Tatal and

Nisnlav

p—

Swine

Comnlete

Validate

Remove

Record

Print

1

Clear

1

Figure7: Example Subsystem Interaction Diagram
Figure 7 provides insight into the coupling and cohesion of the subsystems. This insight may used to refactor the subsystem

design. For example, if there is a lot of traffic between a pair of subsystems, it may make sense to combine them.

Figure 8. Example Locality Interaction Diagram

19

The Rational Unified Process for Systems Engineering 1.0

;(}: Paint of Sale Prickssing P Stire Procgeking Cragit Card Infiface . CentrafOffics Bradessing
Sales Clark _ L/ B)/ B L B J
' 1

Pushes Mew Sale
U i Initates Screens

Initiate List

D 0

Enable scanner

Scans ltem
[;

! Cpature Bar Code

Set Data

U N
. ioadditem to list

Display product data

Pushes Total

I T
H Complete Total

D r

Display Total

Swipe Credit Card

U : Reguest “alidation

“alidate Card

Figure 8: Example Locality Interaction Diagram

The traffic in Figure 8 shows what data must flow between the localities. This information is used to specify the associations
between the localities.

Supplementary Requirements Flowdown

As a part of the analysis process, the system architects develop an initial locality diagram. The locality view is a synthesis of
the non-functional considerations and provides a context for addressing how the non-functional requirements such as
reliability and capacity will be addressed.

Standard engineering practice allows for the budgeting of capacity, permitted failure rates, and so forth. This effort results in a
set of derived supplementary requirements for each locality element. The locality characteristics are determined from these
requirements. The derived requirements and characteristics will be revisited after the hosting requirements are determined in
the use-case flowdown activity described below.

Component Specification

Moving from the analysis to the design level of the architecture entails determination of the hardware and software component
design. This design-level specification consists of the components, both hardware and software, to be deployed.

20

The Rational Unified Process for Systems Engineering 1.0

Hardware components are determined by analyzing the localities, their derived characteristics, and hosted subsystem use
cases. With this information, descriptor-level realizations of the localities can be selected. Descriptor node diagrams specify
the components, servers, workstations, workers, and so forth, without specific choices of technologies that implement those
components. Figure 9 is an example descriptor node diagram that realizes the locality diagram shown in Figure 5. The
fulfillment system in Figure 9 is realized as two components: a warehouse gateway and mailing/postage system, and two
workers.

The descriptor nodes inherit characteristics from their localities through an allocation or budgeting process.

=
<< Connection s » Cugtomer Sy
Trdraned
ales Server

N .
<LConne cion ¥
Irdramed

Store Manager Online Customer

1 1'iom Tyaiem Ad o) |4 om Sy mm Aok ¥
<< Conrggction =
4

<< Connection s>

____ Creqit Card 53 Indraned
1

< Conrection: >
Idraned
Story Central Swstem Store Enager Termpinal %

Bank Credit Card System

1'iom Syaiem Scioa)

redit Cad S stem

om Syalem Sdoa)

~.n

<< Connection >
LfEne Bcommerce Gapefay

1 Ao ontants Tetmind
‘-H""'\-\.

% Enteyprize Comjpufer

Stock Picher

|om Syalem Ao

Accountant .
<< Connection s>

fhom Talmm A9 gt
ZConnection

Wgiler

1
o Tyl Actma << Connection >

Irdraret
hgilingsPastage $watem A ifars

<4 Connection >
AP

E-zqmmenze SErder

Figure 9: Example Descriptor Node Diagram

The implementation hardware components, the actual deployed set of hardware, are determined by making
cost/performance/capacity trades from the descriptor view. In fact, a system may have more than one hardware configurations,
each meeting different price/performance points.

21

The Rational Unified Process for Systems Engineering 1.0

Components are determined by specifying a set of object classes, and then compiling and assembling the code associated with
those classes into executable files. A fully considered software component design must reflect a variety of concerns:

e Locality — where the components need to run
e Hosting — processor instruction set and memory restrictions for the executing code

e Concurrency — separation of processing into different hosts or memory spaces to address reliability and related
concerns

It follows that the information needed to specify components includes the surveys of hosted subsystem use cases for localities
and their realized hardware components, surveys of executed use cases for processes, along with the view of participating
classes (VOPC) for the subsystem use cases.

An overview of the method is, for each hardware configuration to create a component from the class participating in all of
subsystem use cases hosted on each node. If those use cases need to be executed in more than one process, divide the
components further by assigning the participating classes of the subsystem use cases executed by each of the processes. Note
that some subsystem use cases may be executed by more than one process and therefore their classes may be in more than one
component. Complete the process by dividing the components further to account for memory constraints (such as .exe and .dll
trade-offs), shipping media limitations, and so forth.

These activities result in a set of specific hardware and software components that make up the system.

System Development

RUP SE projects are managed much as any RUP project. However, because of the size and additional activities of most
systems engineering efforts, there are some differences. These differences are discussed briefly in this section.

Project Organization

The movement from a serialized to an iterative process has profound implications in how a project must be organized. In a
serialized process, staff is often assigned to a project until their artifacts are complete. For example, the engineering staff
might complete the specifications, hand them off to the development staff, and move on to the next project. In any RUP-based
project, no such handoff occurs. Rather the artifacts evolve throughout the development. It follows that the staff responsible
for project artifacts, such as the requirements database and UML architecture, must be assigned to the development project
throughout its duration.

Figure 10 shows the organization for a typical RUP SE project. The organization is collection of development teams, each

with a project manager and a technical lead. There are also teams that deal with overall system architecture and project
management.

22

The Rational Unified Process for Systems Engineering 1.0

7

Enterprise/ Business Modeling I)

o
(gl I Q0 ©
s JT 17 =8
D = b <
QO d K 53
o N]
3 =] —», 57
= . " 3
1> System Architecture —r o -g
J\l' / 2 3
\ Q =
s lx \ 3 S
A - g 2
/ / a)
, ; -
Software Subsystem Hardware Development,] J ok g..
Development Teams Acquisition Teams J\r ” o Q
L Q
3 =
=
o

(
L

Figure 10 A RUP SE Organization Chart

e The Enterprise Modeling team analyzes the business need and generates business models and/or related
artifacts such as Concept of Operations documents.

e The System Architecture Team works with the Enterprise Modeling Team to create the system context and
derive system requirements. The team develops the subsystem and locality views as well as their derived
requirements. Throughout the development, this team serves as a technical escalation point, resolving
architectural and engineering issues. The System Architecture Team also works with the development teams to
specify the software component architecture. Team members include the technical leads of the development
teams.

o The Project Management Team looks after the standard project issues such as project reviews, resource
planning, budget tracking, earned value and variances, and coordinated iteration planning

e For each iteration, the Integration and Test Team receives the code and hardware components from the
development teams, builds the software components, and installs the hardware and software components in a
laboratory setting. The team also plans, executes, and reports on the system tests for each iteration.

23

The Rational Unified Process for Systems Engineering 1.0

e The Subsystem Development teams are responsible for the design and implementation of one or more
subsystems. The teams base their work on the derived use cases discovered during the flowdown activity.
Depending on the size and complexity of the system, the subsystem use cases may be realized as class design
and associated code modules or the subsystems may be further decomposed into subsystems. In the latter case, a
subsystem team may be further decomposed into sub-subsystem teams and a subsystem architecture team may
be created. This process enables scalability of the RUP SE approach.

e The Hardware Development and Acquisition Team is responsible for the design, specification, and delivery
of the cases; this team might install and maintain the system in the field. In other cases, this team might handle
user defect reporting and provide patches to the field.

e The Deployment Operations and Maintenance Team handles operational issues and serves as a liaison with
the users. In some

Concurrent Design and Implementation

One feature of the RUP SE organization approach is that it scales to very large programs. This is accomplished by taking
advantage of the decomposition of the system into subsystems and localities with their derived requirements. Each of these
analysis model elements is suitable for concurrent design and development. As described in the previous section, UML
subsystems may be assigned to separate develop teams, localities to hardware development or acquisition teams. Each team
works off of its derived use case survey to develop their portion of the design model and implementation models. This way
the design and implementation of the design elements can proceed in parallel.

For very large systems, a systems-of-systems approach can be adopted. In this case, each UML subsystem has its own locality
model. This assignment permits there the application of the above organization structure at the subsystem level, providing
even more scalability.

Iterative Development, Integration, and Test

One central feature of the RUP is that the system is developed in a series of iterations, each of which adds functionality. The
system is integrated and tested at each iteration. The iteration testing is a subset of the system tests. Consequently, the final
iteration results in a fully tested system ready for transition to the operational setting.

The timing and content iterations are captured in an Iteration Plan early in the project. However, like any RUP artifact, the
Iteration Plan is updated continually to reflect the emerging understanding of the system as it comes together.

The content of an iteration, captured in a system iteration plan, is specified by what use cases and supplementary
requirements are realized by the components developed in the iteration. Each iteration is tested by the subset of applicable
system test cases.

Recall that subsystems and localities have derived use cases that trace from system use cases. This tracing provides a basis for
derived iteration plans for the subsystems and localities. That is, the content of each system iteration determines by
traceability the functionality that needs to be provided by the subsystems and localities to support the iteration. In practice, the
development teams will negotiate the iteration content to reflect their development practicalities. For example, an early system
iteration cannot require full functionality of a subsystem. Compromises must be made.

A good system iteration plan provides the opportunity to identify and resolve system technical risks early, before the typical
panic of the waterfall-based integration and testing phase. The technical risks can involve both functional and nonfunctional
requirements. For example, an early integration can shake out system bring up and fail-over issues that cannot be fully
understood with detailed design and interface specifications. In practice, the early iterations should validate that the
architecture is sufficient to meet the non-functional requirements.

Iterative system development may seem more expensive because it requires more testing, as well as scaffolded or simulated
hardware environments to support the early iterations. Coordination of the iteration content across development teams also

24

The Rational Unified Process for Systems Engineering 1.0

takes more project management effort. However, these apparent costs are offset by the savings in early identification and
mitigation of risks associated with the system architecture. It is a standard engineering principle that removing architectural
defects late in a project is much more expensive than removing them early. Removing defects late also adds uncertainty and
schedule risk late in a project.

The role of the testing organization is different than it is in an organization that adopts a serialized, waterfall approach. Rather

than spending more of the development planning for an overall system integration at the end of the development, the
organization spends its time integrating, testing, and reporting defects.

Conclusion

RUP SE is a derivative of the Rational Unified Process; RUP SE Deployment Service is a packaged service available from
Rational Software. It is suitable for projects that have one or more of the following characteristics:

e Architecturally significant deployment issues

e Concurrent hardware and/or software development efforts

RUP SE provides the system development team with the advantages of RUP best practices while providing a setting for
addressing overall system issues. Some of the benefits of RUP SE include:

e System Team Support — Provides for ongoing collaboration of business analysts, architects, system
engineers, software developers, hardware developers, and testers.

e System Quality — Provides the views to support addressing system quality issues in an architecture driven
process

e System Visual Modeling — Provides UML support for systems architecture
e Scalability —Scales from small to large systems

e Component Development — Provides the workflows for determining the hardware and software
components

e System Iterative Design and Development — Supports concurrent design, iterative development of
hardware and software components

25

Rational

the software development company

Corporate Headquarters
18880 Homestead Road
Cupertino, CA 95014
Toll-free: 800-728-1212
Tel: 408-863-9900

Fax: 408-863-4120
E-mail: info@rational.com

Web: www.rational.com

For International Offices: www.rational.com/corpinfo/worldwide/location.jtmpl

Rational, the Rational logo, RUP and Rational Unified Process are registered trademarks of Rational Software Corporation in the United States and in other
countries. All other names used for identification purposes only and are trademarks or registered trademarks of their respective companies. ALL RIGHTS

RESERVED. Made in the U.S.A.

© Copyright 2001 Rational Software Corporation.

TP165 8/01. Subject to change without notice.

