Introduction to Artificial Intelligence

David Pinto

Fundamentals...

- As we begin the new millenium
 - science and technology are changing rapidly
 - "old" sciences such as physics are relatively well-understood
 - computers are ubiquitous
- Grand Challenges in Science and Technology
 - understanding the brain
 - reasoning, cognition, creativity
 - creating intelligent machines
 - is this possible?
 - what are the technical and philosophical challenges?
 - arguably AI poses the most interesting challenges and questions in computer science today

Outline

- What is intelligence? What is artificial intelligence?
- A very brief history of AI
 - Modern successes: Stanley the driving robot
- An AI scorecard
 - How much progress has been made in different aspects of AI
- AI in practice
 - Successful applications
- The rational agent view of AI

What is Intelligence?

- Intelligence:
 - "the capacity to learn and solve problems" (Websters dictionary)
 - in particular,
 - the ability to solve novel problems
 - the ability to act rationally
 - the ability to act like humans
- Artificial Intelligence
 - build and understand intelligent entities or agents
 - 2 main approaches: "engineering" versus "cognitive modeling"

What's involved in Intelligence?

- Ability to interact with the real world
 - to perceive, understand, and act
 - e.g., speech recognition and understanding and synthesis
 - e.g., image understanding
 - e.g., ability to take actions, have an effect
- Reasoning and Planning
 - modeling the external world, given input
 - solving new problems, planning, and making decisions
 - ability to deal with unexpected problems, uncertainties
- Learning and Adaptation
 - we are continuously learning and adapting
 - our internal models are always being "updated"
 - e.g., a baby learning to categorize and recognize animals

Academic Disciplines relevant to AI

•	Philosophy	Logic, methods of reasoning, mind as physical system, foundations of learning, language, rationality.
•	Mathematics	Formal representation and proof, algorithms, computation, (un)decidability, (in)tractability
•	Probability/Statistics	modeling uncertainty, learning from data
•	Economics	utility, decision theory, rational economic agents
•	Neuroscience	neurons as information processing units.
•	Psychology/ Cognitive Science	how do people behave, perceive, process cognitive information, represent knowledge.
•	Computer engineering	building fast computers
•	Control theory	design systems that maximize an objective function over time
•	Linguistics	knowledge representation, grammars

History of AI

- 1943: early beginnings
 - McCulloch & Pitts: Boolean circuit model of brain
- 1950: Turing
 - Turing's "Computing Machinery and Intelligence"
- 1956: birth of AI
 - Dartmouth meeting: "Artificial Intelligence" name adopted
- 1950s: initial promise
 - Early AI programs, including
 - Samuel's checkers program
 - Newell & Simon's Logic Theorist
- 1955-65: "great enthusiasm"
 - Newell and Simon: GPS, general problem solver
 - Gelertner: Geometry Theorem Prover
 - McCarthy: invention of LISP

History of AI

- 1966—73: Reality dawns
 - Realization that many AI problems are intractable
 - Limitations of existing neural network methods identified
 - Neural network research almost disappears
- 1969—85: Adding domain knowledge
 - Development of knowledge-based systems
 - Success of rule-based expert systems,
 - E.g., DENDRAL, MYCIN
 - But were brittle and did not scale well in practice
- 1986-- Rise of machine learning
 - Neural networks return to popularity
 - Major advances in machine learning algorithms and applications
- 1990-- Role of uncertainty
 - Bayesian networks as a knowledge representation framework
- 1995-- AI as Science
 - Integration of learning, reasoning, knowledge representation
 - AI methods used in vision, language, data mining, etc

Success Stories

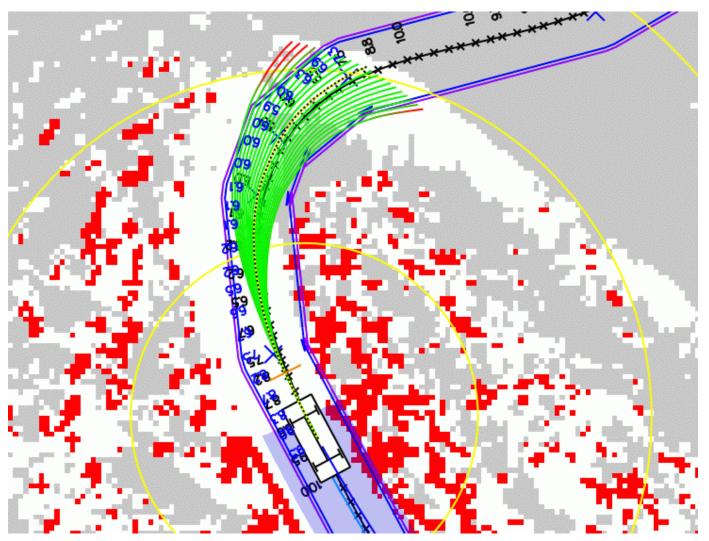
- Deep Blue defeated the reigning world chess champion Garry Kasparov in 1997
- AI program proved a mathematical conjecture (Robbins conjecture) unsolved for decades
- During the 1991 Gulf War, US forces deployed an AI logistics planning and scheduling program that involved up to 50,000 vehicles, cargo, and people
- NASA's on-board autonomous planning program controlled the scheduling of operations for a spacecraft
- Proverb solves crossword puzzles better than most humans
- Robot driving: DARPA grand challenge 2003-2007
- 2006: face recognition software available in consumer cameras

Example: DARPA Grand Challenge

- Grand Challenge
 - Cash prizes (\$1 to \$2 million) offered to first robots to complete a long course completely unassisted
 - Stimulates research in vision, robotics, planning, machine learning, reasoning, etc
- 2004 Grand Challenge:
 - 150 mile route in Nevada desert
 - Furthest any robot went was about 7 miles
 - ... but hardest terrain was at the beginning of the course
- 2005 Grand Challenge:
 - 132 mile race
 - Narrow tunnels, winding mountain passes, etc
 - Stanford 1st, CMU 2nd, both finished in about 6 hours
- 2007 Urban Grand Challenge
 - November in Victorville, California

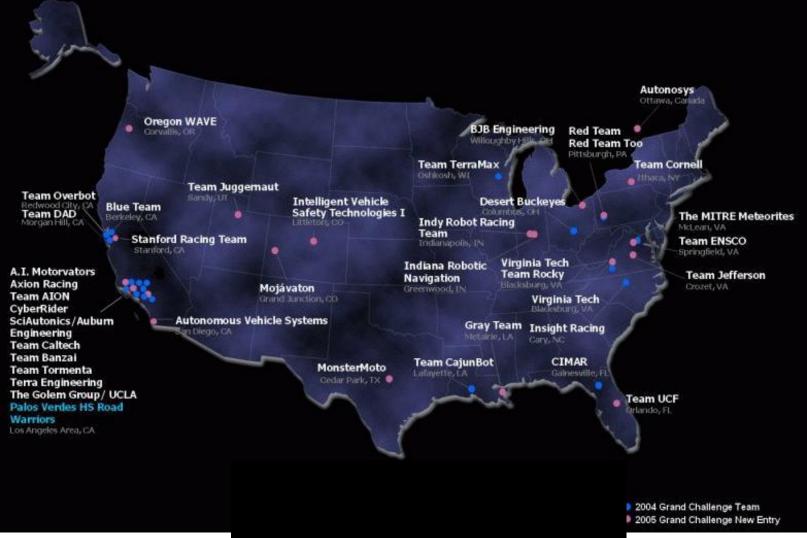
CIOECUD

MDV


intel ____

RedBull


Next few slides courtesy of Prof. Sebastian Thrun, Stanford University


Planning = Rolling out Trajectories

2004: Barstow, CA, to Primm, NV

2005 Semi-Finalists: 43 Teams

The Grand Challenge Race

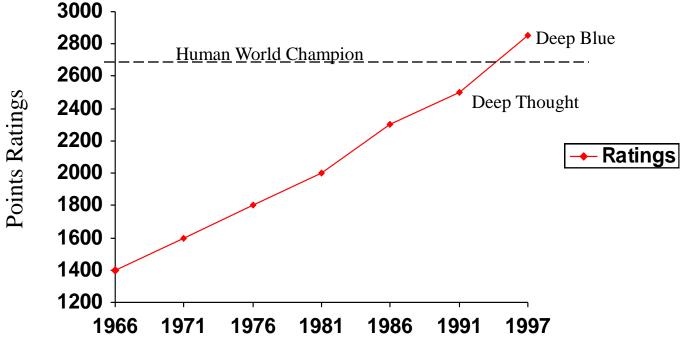
HAL: from the movie 2001

- 2001: A Space Odyssey
 - classic science fiction movie from 1969
- HAL
 - part of the story centers around an intelligent computer called HAL
 - HAL is the "brains" of an intelligent spaceship
 - in the movie, HAL can
 - speak easily with the crew
 - see and understand the emotions of the crew
 - navigate the ship automatically
 - diagnose on-board problems
 - make life-and-death decisions
 - display emotions
- In 1969 this was science fiction: is it still science fiction?

Hal and AI

- HAL's Legacy: 2001's Computer as Dream and Reality
 - MIT Press, 1997, David Stork (ed.)
 - discusses
 - HAL as an intelligent computer
 - are the predictions for HAL realizable with AI today?
- Materials online at
 - <u>http://mitpress.mit.edu/e-books/Hal/contents.html</u>
- The website contains
 - full text and abstracts of chapters from the book
 - links to related material and AI information
 - sound and images from the film

Consider what might be involved in building a computer like Hal....


- What are the components that might be useful?
 - Fast hardware?
 - Chess-playing at grandmaster level?
 - Speech interaction?
 - speech synthesis
 - speech recognition
 - speech understanding
 - Image recognition and understanding ?
 - Learning?
 - Planning and decision-making?

Can we build hardware as complex as the brain?

- How complicated is our brain?
 - a neuron, or nerve cell, is the basic information processing unit
 - estimated to be on the order of 10¹² neurons in a human brain
 - many more synapses (10¹⁴) connecting these neurons
 - cycle time: 10 ⁻³ seconds (1 millisecond)
- How complex can we make computers?
 - 10⁸ or more transistors per CPU
 - supercomputer: hundreds of CPUs, 10¹² bits of RAM
 - cycle times: order of 10 9 seconds
- Conclusion
 - YES: in the near future we can have computers with as many basic processing elements as our brain, but with
 - far fewer interconnections (wires or synapses) than the brain
 - much faster updates than the brain
 - but building hardware is very different from making a computer behave like a brain!

Can Computers beat Humans at Chess?

- Chess Playing is a classic AI problem
 - well-defined problem
 - very complex: difficult for humans to play well

- Conclusion:
 - YES: today's computers can beat even the best human

Can Computers Talk?

- This is known as "speech synthesis"
 - translate text to phonetic form
 - e.g., "fictitious" -> fik-tish-es
 - use pronunciation rules to map phonemes to actual sound
 - e.g., "tish" -> sequence of basic audio sounds
- Difficulties
 - sounds made by this "lookup" approach sound unnatural
 - sounds are not independent
 - e.g., "act" and "action"
 - modern systems (e.g., at AT&T) can handle this pretty well
 - a harder problem is emphasis, emotion, etc
 - humans understand what they are saying
 - machines don't: so they sound unnatural
- Conclusion:
 - NO, for complete sentences
 - YES, for individual words

Can Computers Recognize Speech?

- Speech Recognition:
 - mapping sounds from a microphone into a list of words
 - classic problem in AI, very difficult
 - "Lets talk about how to wreck a nice beach"
 - (I really said "_____")
- Recognizing single words from a small vocabulary
 - systems can do this with high accuracy (order of 99%)
 - e.g., directory inquiries
 - limited vocabulary (area codes, city names)
 - computer tries to recognize you first, if unsuccessful hands you over to a human operator
 - saves millions of dollars a year for the phone companies

Recognizing human speech (ctd.)

- Recognizing normal speech is much more difficult
 - speech is continuous: where are the boundaries between words?
 - e.g., "John's car has a flat tire"
 - large vocabularies
 - can be many thousands of possible words
 - we can use **context** to help figure out what someone said
 - e.g., hypothesize and test
 - try telling a waiter in a restaurant:
 - "I would like some dream and sugar in my coffee"
 - background noise, other speakers, accents, colds, etc
 - on normal speech, modern systems are only about 60-70% accurate
- Conclusion:
 - NO, normal speech is too complex to accurately recognize
 - YES, for restricted problems (small vocabulary, single speaker)

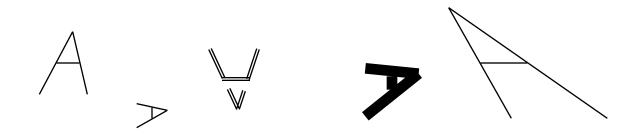
Can Computers Understand speech?

- Understanding is different to recognition:
 - "Time flies like an arrow"
 - assume the computer can recognize all the words
 - how many different interpretations are there?

Can Computers Understand speech?

- Understanding is different to recognition:
 - "Time flies like an arrow"
 - assume the computer can recognize all the words
 - how many different interpretations are there?
 - 1. time passes quickly like an arrow?
 - 2. command: time the flies the way an arrow times the flies
 - 3. command: only time those flies which are like an arrow
 - 4. "time-flies" are fond of arrows

Can Computers Understand speech?


- Understanding is different to recognition:
 - "Time flies like an arrow"
 - assume the computer can recognize all the words
 - how many different interpretations are there?
 - 1. time passes quickly like an arrow?
 - 2. command: time the flies the way an arrow times the flies
 - 3. command: only time those flies which are like an arrow
 - 4. "time-flies" are fond of arrows
 - only 1. makes any sense,
 - but how could a computer figure this out?
 - clearly humans use a lot of implicit commonsense knowledge in communication
- Conclusion: NO, much of what we say is beyond the capabilities of a computer to understand at present

Can Computers Learn and Adapt ?

- Learning and Adaptation
 - consider a computer learning to drive on the freeway
 - we could teach it lots of rules about what to do
 - or we could let it drive and steer it back on course when it heads for the embankment
 - systems like this are under development (e.g., Daimler Benz)
 - e.g., RALPH at CMU
 - in mid 90's it drove 98% of the way from Pittsburgh to San Diego without any human assistance
 - machine learning allows computers to learn to do things without explicit programming
 - many successful applications:
 - requires some "set-up": does not mean your PC can learn to forecast the stock market or become a brain surgeon
- Conclusion: YES, computers can learn and adapt, when presented with information in the appropriate way

Can Computers "see"?

- Recognition v. Understanding (like Speech)
 - Recognition and Understanding of Objects in a scene
 - look around this room
 - you can effortlessly recognize objects
 - human brain can map 2d visual image to 3d "map"
- Why is visual recognition a hard problem?

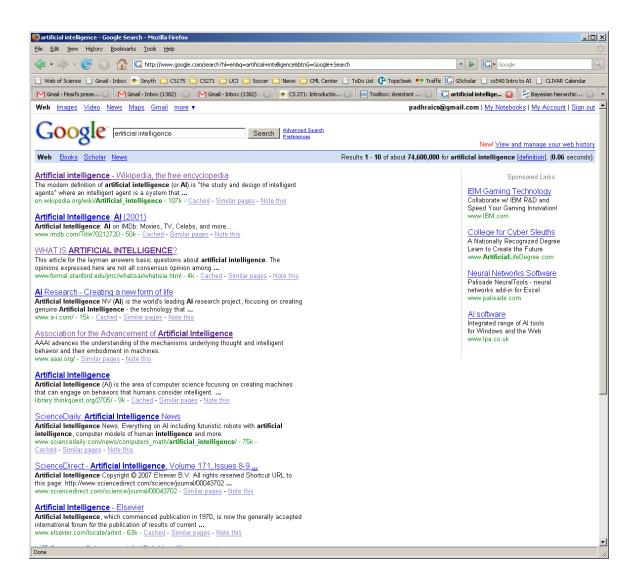
- Conclusion:
 - mostly NO: computers can only "see" certain types of objects under limited circumstances
 - YES for certain constrained problems (e.g., face recognition)

Can computers plan and make optimal decisions?

- Intelligence
 - involves solving problems and making decisions and plans
 - e.g., you want to take a holiday in Brazil
 - you need to decide on dates, flights
 - you need to get to the airport, etc
 - involves a sequence of decisions, plans, and actions
- What makes planning hard?
 - the world is not predictable:
 - your flight is canceled or there's a backup on the 405
 - there are a potentially huge number of details
 - do you consider all flights? all dates?
 - no: commonsense constrains your solutions
 - AI systems are only successful in constrained planning problems
- Conclusion: NO, real-world planning and decision-making is still beyond the capabilities of modern computers
 - exception: very well-defined, constrained problems

Summary of State of AI Systems in Practice

- Speech synthesis, recognition and understanding
 - very useful for limited vocabulary applications
 - unconstrained speech understanding is still too hard
- Computer vision
 - works for constrained problems (hand-written zip-codes)
 - understanding real-world, natural scenes is still too hard
- Learning
 - adaptive systems are used in many applications: have their limits
- Planning and Reasoning
 - only works for constrained problems: e.g., chess
 - real-world is too complex for general systems
- Overall:
 - many components of intelligent systems are "doable"
 - there are many interesting research problems remaining


Intelligent Systems in Your Everyday Life

- Post Office
 - automatic address recognition and sorting of mail
- Banks
 - automatic check readers, signature verification systems
 - automated loan application classification
- Customer Service
 - automatic voice recognition
- The Web
 - Identifying your age, gender, location, from your Web surfing
 - Automated fraud detection
- Digital Cameras
 - Automated face detection and focusing
- Computer Games
 - Intelligent characters/agents

AI Applications: Machine Translation

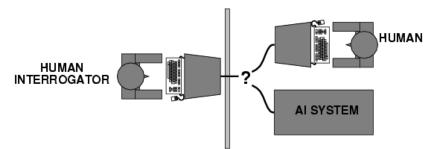
- Language problems in international business
 - e.g., at a meeting of Japanese, Korean, Vietnamese and Swedish investors, no common language
 - or: you are shipping your software manuals to 127 countries
 - solution; hire translators to translate
 - would be much cheaper if a machine could do this
- How hard is automated translation
 - very difficult! e.g., English to Russian
 - "The spirit is willing but the flesh is weak" (English)
 - "the vodka is good but the meat is rotten" (Russian)
 - not only must the words be translated, but their meaning also!
 - is this problem "AI-complete"?
- Nonetheless....
 - commercial systems can do a lot of the work very well (e.g., restricted vocabularies in software documentation)
 - algorithms which combine dictionaries, grammar models, etc.
 - Recent progress using "black-box" machine learning techniques

AI and Web Search

What's involved in Intelligence? (again)

- Perceiving, recognizing, understanding the real world
- Reasoning and planning about the external world
- Learning and adaptation

• So what general principles should we use to achieve these goals?


Different Types of Artificial Intelligence

- 1. Modeling exactly how humans actually think
- 2. Modeling exactly how humans actually act
- 3. Modeling how ideal agents "should think"
- 4. Modeling how ideal agents "should act"

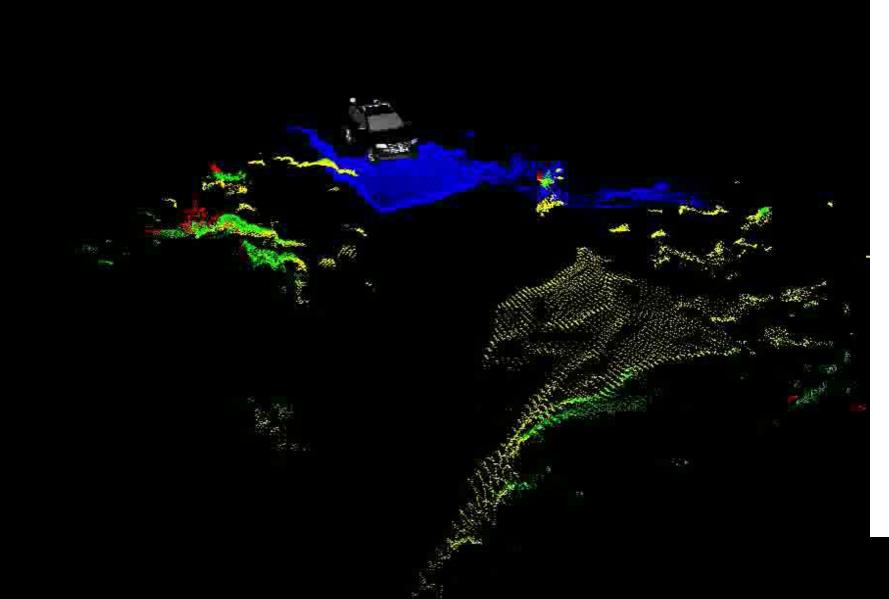
- Modern AI focuses on the last definition
 - we will also focus on this "engineering" approach
 - success is judged by how well the agent performs

Acting humanly: Turing test

- Turing (1950) "Computing machinery and intelligence"
- "Can machines think?" \rightarrow "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Suggests major components required for AI:
 - knowledge representation
 - reasoning,
 - language/image understanding,
 - learning
- * Question: is it important that an intelligent system act like a human?

Thinking humanly


- Cognitive Science approach
 - Try to get "inside" our minds
 - E.g., conduct experiments with people to try to "reverse-engineer" how we reason, learning, remember, predict
- Problems
 - Humans don't behave rationally
 - e.g., insurance
 - The reverse engineering is very hard to do
 - The brain's hardware is very different to a computer program

Thinking rationally

- Represent facts about the world via logic
- Use logical inference as a basis for reasoning about these facts
- Can be a very useful approach to AI
 - E.g., theorem-provers
- Limitations
 - Does not account for an agent's uncertainty about the world
 - E.g., difficult to couple to vision or speech systems
 - Has no way to represent goals, costs, etc (important aspects of real-world environments)

Acting rationally

- Decision theory/Economics
 - Set of future states of the world
 - Set of possible actions an agent can take
 - Utility = gain to an agent for each action/state pair
 - An agent acts rationally if it selects the action that maximizes its "utility"
 - Or expected utility if there is uncertainty
- Emphasis is on autonomous agents that behave rationally (make the best predictions, take the best actions)
 - on average over time
 - within computational limitations ("bounded rationality")

Summary

- Artificial Intelligence involves the study of:
 - automated recognition and understanding of signals
 - reasoning, planning, and decision-making
 - learning and adaptation
- AI has made substantial progress in
 - recognition and learning
 - some planning and reasoning problems
 - ...but many open research problems
- AI Applications
 - improvements in hardware and algorithms => AI applications in industry, finance, medicine, and science.
- Rational agent view of AI
- Reading...