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Search Algorithms 

• Uninformed Blind search 

– Breadth-first 

– uniform first 

– depth-first 

– Iterative deepening depth-first 

– Bidirectional 

– Branch and Bound 

 

• Informed Heuristic search  

– Greedy search, hill climbing, Heuristics 

 

• Important concepts: 

– Completeness 

– Time complexity 

– Space complexity 

– Quality of solution 



Tree-based Search 

• Basic idea: 
– Exploration of state space by generating successors of already-

explored states (a.k.a. expanding states). 

 

– Every state is evaluated: is it a goal state? 

 

 

• In practice, the solution space can be a graph, not a tree 

– E.g., 8-puzzle 

– More general approach is graph search 

– Tree search can end up repeatedly visiting the same nodes 

• Unless it keeps track of all nodes visited 

• …but this could take vast amounts of memory 

 

 

 

 



Tree search example 



Tree search example 



Tree search example 



Tree search example 

This “strategy” is 

what differentiates 

different search 

algorithms 



States versus Nodes 

• A state is a (representation of) a physical configuration 

 

• A node is a data structure constituting part of a search tree contains info 
such as: state, parent node, action, path cost g(x), depth 

 

 

 

 

 

 

 

 

 

 

• The Expand function creates new nodes, filling in the various fields and 
using the SuccessorFn of the problem to create the corresponding states. 

 



Search Tree for the 8 puzzle problem 



Search Strategies 

• A search strategy is defined by picking the order of node 
expansion 

 

• Strategies are evaluated along the following dimensions: 

– completeness: does it always find a solution if one exists? 

– time complexity: number of nodes generated 

– space complexity: maximum number of nodes in memory 

– optimality: does it always find a least-cost solution? 

 

• Time and space complexity are measured in terms of  

– b: maximum branching factor of the search tree 

– d: depth of the least-cost solution 

– m: maximum depth of the state space (may be ∞) 

 



Breadth-First Search (BFS) 

• Expand shallowest unexpanded node 

 

• Fringe: nodes waiting in a queue to be explored, also called OPEN 

 

• Implementation: 

– For BFS, fringe is a first-in-first-out (FIFO) queue 

– new successors go at end of the queue  

 

 

• Repeated states? 

– Simple strategy: do not add parent of a node as a leaf 

 

 



Example: Map Navigation 

S G 

A B 

D E 

C 

F 

State Space: 
S = start,   G = goal,  other nodes = intermediate states, links = legal transitions 



BFS Search Tree 

S 
S G 

A B 

D E 

C 

F 

  
Queue = {S} 
 
Select S 
 
Goal(S) = true? 
 
 
If not, Expand(S) 
  
 
  



BFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

  
Queue = {A, D} 
 
Select A 
 
Goal(A) = true? 
 
 
If not, Expand(A) 
  
 
  



BFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

B D 
  
  
  
Queue = {D, B, D} 
 
Select D 
 
Goal(D) = true? 
 
If not, expand(D) 

  
 
  



BFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

A E B D 
  
Queue = {B, D, A, E} 
 
Select B 
etc. 



BFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

A E B D 

B F E S E S B C  

  
Level 3 
Queue = {C, E, S, E, S, B, B, F} 
 
  



BFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

A E B D 

B F E S E S B 

G D F B F A D C  E A C 

C  

  
Level 4 
Expand queue until G is at front 
Select G 
Goal(G) = true 
 
  



Breadth-First Search 



Depth-First Search (BFS) 

• Expand deepest unexpanded node 

 

 

• Implementation: 

– For DFS, fringe is a first-in-first-out (FIFO) queue 

– new successors go at beginning of the queue 

 

• Repeated nodes? 

– Simple strategy: Do not add a state as a leaf if that state is on the 
path from the root to the current node 



DFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

Queue = {A,D} 



DFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

B D 
Queue = {B,D,D} 



DFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

B D 

E C  

Queue = {C,E,D,D} 



DFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

B D 

E 

D F 

C  

Queue = {D,F,D,D} 



DFS Search Tree 

S 
S G 

A B 

D E 

C 

F 
A D 

B D 

E 

D F 

C  

G 

Queue = {G,D,D} 



Evaluation of Search Algorithms 

• Completeness 
– does it always find a solution if one exists? 

 

• Optimality 
– does it always find a least-cost (or min depth) solution? 

 

• Time complexity 
– number of nodes generated (worst case) 

 

• Space complexity 
– number of nodes in memory (worst case) 

 

 

• Time and space complexity are measured in terms of  
– b: maximum branching factor of the search tree 

– d: depth of the least-cost solution 

– m: maximum depth of the state space (may be ∞) 



Breadth-First Search (BFS) Properties 

• Complete? Yes 

 

• Optimal? Only if path-cost = non-decreasing function of depth 

 

• Time complexity O(bd) 

 

• Space complexity O(bd) 

 

 

• Main practical drawback? exponential space complexity 

 



Complexity of Breadth-First Search 

• Time Complexity 

– assume (worst case) that there is 1 

goal leaf at the RHS at depth d 

– so BFS will generate 

 

    = b + b2+  ..... + bd + bd+1 - b    

      = O (bd+1)  

 

 

• Space Complexity 

– how many nodes can be in the queue 

(worst-case)? 

– at depth d there are bd+1 unexpanded 

nodes in the Q  = O (bd+1)  

d=0 

d=1 

d=2 

d=0 

d=1 

d=2 

G 

G 



Examples of Time and Memory Requirements for 
Breadth-First Search 

Depth of   Nodes 

Solution  Generated Time  Memory 

 

 

2   1100  0.11 seconds 1 MB 

 

4   111,100  11 seconds 106 MB 

 

8   109  31 hours  1 TB 

 

12   1013  35 years  10 PB 

  

Assuming b=10,   10000 nodes/sec,   1kbyte/node  



What is the Complexity of Depth-First Search? 

• Time Complexity   

– maximum tree depth = m 

– assume (worst case) that there is 
1 goal leaf at the RHS at depth d 

– so DFS will generate   O (bm)  
 
 

 

 

• Space Complexity 

– how many nodes can be in the 
queue (worst-case)? 

– at depth m we have b nodes 

– and b-1 nodes at earlier depths 

– total = b + (m-1)*(b-1) = O(bm) 

d=0 

d=1 

d=2 

G 

  

d=0 

d=1 

d=2 

 

d=3 

 

d=4 



Examples of Time and Memory Requirements for 
Depth-First Search 

Depth of   Nodes 

Solution  Generated Time  Memory 

 

 

2   1012   3 years  120kb 

 

4   1012   3 years  120kb 

 

8   1012   3 years  120kb 

 

12   1012  3 years  120kb  

  

Assuming b=10,  m = 12,  10000 nodes/sec,   1kbyte/node  



Depth-First Search (DFS) Properties 

• Complete? 

– Not complete if tree has unbounded depth 

• Optimal? 

– No 

• Time complexity? 

– Exponential   

• Space complexity? 

– Linear 

 

 

 



Comparing DFS and BFS 

• Time complexity: same, but 

– In the worst-case BFS is always better than DFS 

– Sometime, on the average DFS is better if: 

• many goals, no loops and no infinite paths 

 

• BFS is much worse memory-wise 

• DFS is linear space 

• BFS may store the whole search space. 

 

• In general 

• BFS is better if goal is not deep, if infinite paths, if many loops, 
if small search space 

• DFS is better if many goals, not many loops, 

• DFS is much better in terms of memory 



DFS with a depth-limit L  

• Standard DFS, but tree is not explored below some depth-limit L   

 

• Solves problem of infinitely deep paths with no solutions 

– But will be incomplete if solution is below depth-limit 

 

• Depth-limit L can be selected based on problem knowledge 

– E.g., diameter of state-space: 

• E.g., max number of steps between 2 cities 

– But typically not known ahead of time in practice 

 

 



Depth-First Search with a depth-limit, L = 5 



Depth-First Search with a depth-limit 





Iterative Deepening Search (IDS) 

• Run multiple DFS searches with increasing depth-limits 

 

 

Iterative deepening search   

 L = 1 

 While no solution, do 

 DFS from initial state S0 with cutoff L   

 If found goal,  

 stop and return solution,  

 else, increment depth limit L   

 

  

 



Iterative deepening search L=0 



Iterative deepening search L=1 



Iterative deepening search L=2 



Iterative Deepening Search L=3 



Iterative deepening search 



Properties of Iterative Deepening Search 

• Space complexity = O(bd) 
• (since its like depth first search run different times, with maximum 

depth limit d) 

 

• Time Complexity 
• b + (b+b2) + .......(b+....bd)  = O(bd) 

  (i.e., asymptotically the same as BFS or DFS to limited depth d in  the 
worst case) 
 

  

• Complete? 
– Yes 

 

• Optimal 
– Only if path cost is a non-decreasing function of depth 

 

 

• IDS combines the small memory footprint of DFS, and has the 
completeness guarantee of BFS  



IDS in Practice 

• Isn’t IDS wasteful? 
– Repeated searches on different iterations 

 

– Compare IDS and BFS: 

• E.g., b = 10 and d = 5 

 

• N(IDS) ~  db + (d-1)b2 +…… bd  = 123,450 

 

• N(BFS) ~  b + b2 +…… bd   =  111,110 

 

• Difference is only about 10% 

– Most of the time is spent at depth d, which is the same 
amount of time in both algorithms 

 
 

• In practice, IDS is the preferred uniform search method with a 
large search space and unknown solution depth 



Bidirectional Search 

• Idea 

– simultaneously search forward from S and backwards from G 

– stop when both “meet in the middle” 

– need to keep track of the intersection of 2 open sets of nodes 
 

• What does searching backwards from G mean 

– need a way to specify the predecessors of G 

• this can be difficult,  

• e.g., predecessors of checkmate in chess? 

– what if there are multiple goal states? 

– what if there is only a goal test, no explicit list? 
 

• Complexity 

– time complexity at best is: O(2 b(d/2)) = O(b (d/2)) 

–  memory complexity is the same 



Bi-Directional Search 



Uniform Cost Search 

• Optimality: path found = lowest cost 

– Algorithms so far are only optimal under restricted circumstances 

 

• Let g(n) = cost from start state S to node n 

 

 

• Uniform Cost Search: 

– Always expand the node on the fringe with minimum cost g(n) 

 

– Note that if costs are equal (or almost equal) will behave similarly 
to BFS 



Uniform Cost Search 



Optimality of Uniform Cost Search? 

• Assume that every step costs at least e > 0 

 

• Proof of Completeness: 

 Given that every step will cost more than 0, and assuming a finite 
branching factor, there is a finite number of expansions required 
before  the total path cost is equal to the path cost of the goal 
state. Hence, we will reach it in a finite number of steps. 

 

 

• Proof of Optimality given Completeness: 

– Assume UCS is not optimal.  

– Then there must be a goal state with path cost smaller than the 
goal state which was found (invoking completeness) 

– However, this is impossible because UCS would have expanded 
that node first by definition. 

– Contradiction. 

 



Complexity of Uniform Cost 

• Let C* be the cost of the optimal solution 

 

• Assume that every step costs at least e > 0 

 

 

• Worst-case time and space complexity is: 

 

                        O( b [1 + floor(C*/e)]  ) 

 

Why?  

   floor(C*/e) ~ depth of solution if all costs are      
   approximately equal 

       

 



Comparison of Uninformed Search Algorithms 



Average case complexity of these algorithms? 

• How would we do an average case analysis of these 
algorithms? 

 

• E.g., single goal in a tree of maximum depth m 

– Solution randomly located at depth d? 

– Solution randomly located in the search tree? 

– Solution randomly located in state-space? 

 

– What about multiple solutions? 

 

   [left as an exercise for the student] 

 



Avoiding Repeated States 

• Possible solution 

– do not add nodes that are on the path from the root 

• Avoids paths containing cycles (loops) 

– easy to check in DFS 

 

• Avoids infinite-depth trees (for finite-state problems) but does 
not avoid visiting the same states again in other branches 

S 

B 

C 

S 

B C 

S C B S 

State Space 
Example of a Search Tree 



Repeated States 

• Failure to detect repeated states can turn a linear problem into 
an exponential one! 



Grid Search: many paths to the same states 

• Grid structure to state space 

– Each state has b = 4 successors 

• So full search tree is size 4d   

– But there are only 2d2 distinct states within d steps of any state 

 

– E.g., d = 20:  1012 nodes in search tree, but only 800 distinct states 

 



Graph Search v. Tree Search 

• Record every state visited and only generate states that are 
not on this list 

 

• Modify Tree-Search algorithm 

– Add a data structure called closed-list 

• Stores every previously expanded node 

– (fringe of unexpanded nodes is called the open-list) 

 

– If current node is on the closed-list, it is discarded, not expanded 

 

– Can have exponential memory requirements 

 

– However, on problems with many repeated states (but small state-
space), graph-search can be much more efficient than tree-search. 

 



Summary 

• A review of search 
– a search space consists of states and operators: it is a graph 

– a search tree represents a particular exploration of search space 
 

• There are various strategies for “uninformed search” 
– breadth-first 

– depth-first 

– iterative deepening 

– bidirectional search 

– Uniform cost search 

 

• Various trade-offs among these algorithms 
– “best” algorithm will depend on the nature of the search problem 

 

• Methods for detecting repeated states 
 

• Next up – heuristic search methods   

 


