Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Computación

Tarea No. 1 Matemáticas Elementales

Profesor Fco. Javier Robles Mendoza

Lógica y Conjuntos

- **1.** Considere las proposiciones siguientes: p: "esta lloviendo", q: " el sol esta brillando", r: "hay nubes en el cielo". Traduzca lo siguiente a notación lógica, utilizando p, q, r y conectivos lógicos.
- a) Esta lloviendo y el sol esta brillando.
- b) Si esta lloviendo, entonces hay nubes en el cielo.
- c) Si no esta lloviendo, entonces el sol no esta brillando y hay nubes en el cielo.
- d) El sol esta brillando si y solo si no esta brillando.
- e) Si no hay nubes en el cielo, entonces el sol esta brillando.
- **2.** Sean p, q, r como en el problema **1**. Traduzca lo siguiente a oraciones en español.

$$a) (p \wedge q) \rightarrow r$$
, $b) (p \rightarrow q) \rightarrow r$, $c) \neg p \leftrightarrow (q \vee r)$, $d) \neg (p \leftrightarrow (q \vee r))$, $e) \neg (p \vee q) \wedge r$.

- **3.** Determine el valor de verdad de cada una de las proposiciones siguientes.
- a) 3 + 3 = 6 \wedge 1 + 2 = 5
- b) No es cierto que 3 + 3 = 6 V 1 + 2 = 3
- c) Es cierto que $2 + 2 \neq 4 \land 1 + 2 = 3$
- d) No es cierto que $3 + 3 \neq 0$ V $1 + 2 \neq 5$.
- **4.** Escriba las reciprocas de las proposiciones siguientes.
- a) $q \rightarrow r$
- b) Si soy listo entonces soy rico
- c) Si 2 + 2 = 4 entonces 2 + 4 = 8
- d) Si $x^2 = x$ entonces x = 0 V x = 1.
- **5.** Proporcione las contrarreciprocas de las proposiciones del problema **4**.
- **6.** Sean p, q, r, s cuatro proposiciones simples cuyos valores de verdad son: p verdadera, q verdadera, r verdadera, s falsa. Diga cuales de las proposiciones compuestas que aparecen a continuación son verdaderas.
- $i) (\neg p \rightarrow q) \rightarrow (s \rightarrow r)$
- $ii) (p \rightarrow q) \rightarrow [(q \rightarrow r) \rightarrow (r \rightarrow s)]$

$$iii) p \rightarrow [q \rightarrow (r \rightarrow s)]$$

$$iv) (p \land q) \leftrightarrow (r \land \neg s)$$

$$v) (p \leftrightarrow q) \rightarrow (s \leftrightarrow r).$$

- 7. a) Sea p una proposición tal que para cualquier proposición q, es verdadera la proposición $p \lor q$. ¿Que puede decirse sobre el valor de p.
- b) Si $p \leftrightarrow q$ es verdadera, ¿qué puede decirse sobre $p \lor \neg q$?
- c) Si p es una proposición verdadera y q es una proposición falsa, encuentre el valor de verdad de $(p \lor q) \land (\neg q \lor \neg p)$.
- d) Determine el valor de verdad de las proposiciones p y q si se conoce la información siguiente: $\neg p \lor \neg q$ es verdadero y $(p \land q) \leftrightarrow (p \lor q)$ es verdadero.
- e) Supóngase que sabemos que $p \to q$ es falso. Proporcione los valores de verdad para : $p \land q$, $p \lor q$, $q \to p$.
- **8.** Construir la tabla de verdad de las proposiciones siguientes: a) $p \lor p$, b) $p \land \neg q$, c) $(p \land q) \rightarrow r$, d) $(r \lor s) \land \neg (r \land s)$, e) $\neg (p \land q) \lor r$, f) $p \rightarrow \neg (q \land r)$, g) $q \leftrightarrow (\neg q \land p)$, h) $(p \leftrightarrow \neg q) \rightarrow (\neg p \land q)$.
- **9.** Diga cuales de las proposiciones siguientes son tautologías: a) $p \leftrightarrow q$, b) $(p \rightarrow q) \leftrightarrow (q \leftrightarrow p)$,
- c) $\neg [(p \rightarrow q) \rightarrow (\neg p \rightarrow \neg q)].$
- 10. Traducir a forma simbólica y comprobar la validez de los razonamientos siguientes:
- a) Si 6 es par, entonces no divide a 7
- b) En el cumpleaños de mi esposa le llevare flores

5 no es primo o 2 divide a 7

Es el cumpleaños de mi esposa o trabajo hasta tarde

Pero 5 es primo

Hoy no le lleve flores a mi esposa

Por tanto 6 es impar

Por tanto, hoy trabaje hasta tarde

c) Si el hombre tiene conciencia y el hombre tiene libertad,

entonces el hombre es responsable de sus actos

El hombre tiene conciencia

El hombre tiene libertad

Luego...

El hombre tiene conciencia y el hombre tiene libertad

El hombre es responsable de sus actos.

d) Si estudio medicina o estudio filosofía, entonces ingresare a la UNAM

Si obtengo una beca, entonces estudio filosofía o estudio medicina

Obtengo una beca

Luego...

Estudio filosofía o estudio medicina

Estudio medicina o estudio filosofía

Ingresaré a la UNAM.

11. En los siguientes ejemplos de argumentos, expresados en lenguaje simbólico, indique la ley para obtener cada conclusión.

a)
$$\neg p \lor \neg q$$
 b) $(p \lor q) \to (q \to r)$
 $t \to (p \land q)$ $\neg r$
 $r \to s$ p
Luego...
 $rac{\neg q \to (s \lor t)}{\neg s}$
 $rac{\neg t \to w}{\neg t}$
 s Luego...
 $rac{\neg v \to w}{\neg r}$

12. Sea A un conjunto de números reales que cumple las proposiciones siguientes (axiomas):

 $\neg q$

 $s \lor t$

t

w

Axioma 1) $3 \in A$

Axioma 2)
$$x \in A \rightarrow 3x + 1 \in A$$

Axioma 3)
$$x \in A \land y \in A \rightarrow x + y \in A$$

Demuestre, usando el método directo, las proposiciones siguientes:

Teorema 1. Si $7 \in A$ entonces $25 \in A$

Teorema 2. Si $2 \in A$ entonces $27 \in A$.

13. Sea A un conjunto de números reales que cumple las proposiciones siguientes (axiomas):

Axioma 1) $5 \in A$

Axioma 2) $x \in A \land y \in A \rightarrow x + y \in A$

Demuestre, usando la contrarreciproca, las proposiciones siguientes:

Teorema 1. Se tiene que $13 \notin A$ entonces $4 \notin A$

Teorema 2. Si(3x - 6) ∉ A entonces $(x \notin A \lor -11 \notin A)$.

14. Sea B un conjunto de números reales que cumple las proposiciones siguientes (axiomas):

Axioma 1) $3 \in B$

Axioma 2)
$$x \in B \land y \in B \rightarrow xy \in B$$

Axioma 3) $6 \notin B$

Demuestre, usando el método de reducción al absurdo, las proposiciones siguientes:

Teorema 1. Se cumple que : $\frac{5}{2} \in B \rightarrow \frac{4}{5} \notin B$

Teorema 2. Si $\frac{1}{x} \in B$ entonces $\sqrt{2x} \notin B$.

- 15. Demuestre, usando el método directo, que el producto de dos números enteros impares es impar.
- **16.** Demuestre que si n es entero y $n^2 + 5$ es impar, entonces n es par, usando:
- a) Demostración directa, b) Demostración por reducción al absurdo.
- 17. Determine el valor de verdad de las proposiciones siguientes, si $U=\{-2, -1, 0, 1, 2\}$.
- a) $\exists x \in U: x^2 8 = 0$, b) $\forall x \in U: x^2 8 \neq 0$, c) $\forall x \in U: x^4 1 > 0$, d) $\exists x \in U: x^4 1 > 0$,
- e) $\exists x \in U: x^3 8 < 0$, f) $\forall x \in U: x^3 8 > 0$, g) $\exists x \in U: x 6 \notin 0$, h) $\exists x \in U: x^3 + 8 > 0$.
- **18.** Sea p(x) = "x es par" y q(x) = "x divide a 44", x toma valores en los naturales. Traslade las proposiciones simbólicas siguientes a frases.
- a) $\exists x, p(x) \land q(x)$
- b) $\forall x, p(x) \rightarrow q(x)$
- c) $\exists x, \neg (p(x) \land q(x))$
- $\mathrm{d})\,\exists x,p(x)\vee p(x)$
- e) $\exists x, (p(x) \rightarrow q(x)) \lor (\neg p(x) \land \neg q(x)).$
- 19. Niegue las proposiciones del problema 17.
- 20. Diga que clase de cuantificador (existencial o universal) usaría en las proposiciones siguientes:
- a) p(x): x + 8 = 0
- b) q(x): $x^2 4x + 3 = (x 3)(x 1)$
- c) p(x): $x^2 + 8x = 10$

- d) q(x): $(x + 3)^3 = x^3 + 9x^2 + 27x + 27$
- e) r(x): $x^2 = x$.
- 21. Proporcione la negación de cada proposición.
- a) Todos los triángulos isósceles son triángulos equiláteros.
- b) Algunos componentes de los equipos electrónicos no son funcionales.
- c) Nadie mayor de 30 años es confiable.
- d) Algunos algoritmos de programación lineal tienen tiempo de corrida polinomial.
- e) Todos los grafos conexos son grafos con arboles generadores.
- **22.** Niegue las proposiciones siguientes:
- a) $\exists x, \forall y \ p(x, y), b$) $\forall x \forall y, p(x, y), c$) $\exists x, \forall y [\ p(x) \rightarrow q(y)] \ d$), $\exists x \exists y, [\ p(x) \land \neg q(y)].$
- **23.** Basándose en los requisitos para definir un conjunto, identifique entre los siguientes incisos cuales pueden considerarse conjuntos, cuales no, y responda porque.
- a) Las diez mejores obras musicales de todos los tiempos.
- b) Las personas que han viajado a la luna.
- c) Las personas que han viajado a marte.
- d) Los objetivos de una empresa.
- e) Los peores programas de televisión.
- f) Las diez mejores películas del año según la revista siempre.
- g) Los alumnos que acreditaron Matemáticas Elementales en 2007.
- **24.** Expresar los conjuntos siguientes por el método de extensión.
- a) $A = \{x \in \mathbb{N} : x \text{ es par } y \text{ } 5 < x \leq 18\}$
- b) $B = \{las\ letras\ de\ la\ palabra\ Matemáticas\}$
- c) $C = \{x \in \mathbb{R}: x^2 16 = 0\}$
- d) $D = \{las\ formas\ de\ especificar\ un\ conjunto\}$
- 25. Especifique los siguientes conjuntos por el método de comprensión.
- a) El conjunto de todos los continentes del mundo.
- b) El conjunto de todos los océanos de mundo.
- c) El conjunto de todos los días de la semana.
- d) El conjunto formado por los números 1 y -1.

- **26.** a) Si $A = \{1, 2\}$, encuentre 2^A (conjunto potencia de A).
 - b) Si $B = \{0, \{1, 2\}\}$, encuentre 2^B (conjunto potencia de B).
- 27. Dado el conjunto de periódicos $A = \{La \ nación, La \ prensa, El \ universal\}$, liste todos los elementos del conjunto potencia 2^A , y explique por qué las proposiciones siguientes son verdaderas:
- **a)** $\emptyset \notin A \ pero \ \emptyset \in 2^A$, **b)** $\{A\} \notin A, \{A\} \subseteq A \ pero \ \{A\} \subseteq 2^A$, **c)** A es un elemento, pero no es un subconjunto de 2^A , **d)** $\{La \ prensa\} \notin A \ pero \ \{La \ prensa\} \in 2^A$.
- **28.** Sean los conjuntos $A = \{2, 3, 4\}$, $B = \{x | x^2 = 4, x \text{ es positivo}\}$, $C = \{x | x \text{ es par}\}$, $D = \{x | x^2 6x + 8 = 8$. Completar las proposiciones siguientes escribiendo los símbolos \subseteq , $\supseteq \delta \not\subseteq$ entre cada par de conjuntos.
- $(\mathbf{a}) A \quad B, \mathbf{b}) A \quad D, \mathbf{c}) A \quad C, \mathbf{d}) B \quad D, \mathbf{e}) B \quad C, \mathbf{f}) C \quad D.$
- **29.** Sea el conjunto universal $\Omega = \{a, b, c, d, e, f, g, h\}$ y sean $A = \{a, b, c, d, e\}$, $B = \{a, c, e, g\}$, y $C = \{b, c, f, g\}$. Hallar:
- **a)** $A \cup C$, **b)** $B \cap A$, **c)** $B \cap \varphi$, **d)** $(A \cap B) C$, **e)** C B, **f)** B^{C} , **g)** $A \cup \varphi$, **h)** $A^{C} B$, **i)** $B^{C} \cup C$, **j)** $(A C)^{C}$,
- **k**) $(A B^{\mathcal{C}})^{\mathcal{C}}$, **l**) $(A \cap A^{\mathcal{C}})^{\mathcal{C}}$, **m**) $\Omega \mathcal{C}$, **n**) $B^{\mathcal{C}} \cap (\mathcal{C} A)$, $\tilde{\mathbf{n}}$) $A \cap (B \cup \mathcal{C})$, **o**) $(A \cup B) (\mathcal{C} B)$.