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Abstract

We investigate the sensitivity to tax change of multistage portfolio allocation over
a discrete time investment horizon. Special taxation rules within wrappers grouped
a number of risky assets are integrated with multistage linear or quadratic stochastic
programming in the mean-variance framework. The uncertainty on the returns of assets
is specified as a scenario tree generated by simulation based approach. We adjust
different values on capital gains tax under different asset bounds and risk levels. The
tax impact in the yearly reallocation of the investments for a typical case with an annual
fixed withdrawal that utilizes completely the option of taper relief is also explored. Our
computational results show that taxes, combined with other effects such as risk and
investment upper bounds, have a significant performance impact on portfolio allocation
as well as diversification over wrappers. Yet, investment strategies can be made robust
to changes in taxation.

Keywords Finance, stochastic programming, quadratic programming, risk manage-
ment, scenarios

1 Introduction

In this paper, we investigate the impact of changes in taxation on optimal investment
strategies. We perform sensitivity analysis for changes in capital gains tax, upper bounds on
investment assets and risk levels. It is well known that taxation of returns on financial assets
alters the benefits of saving for future consumption and thus affects the trade-off between
current consumption and investment. Moreover, the ability of investors to defer the taxation
of capital gains or tax on wrappers at the end of the horizon alters the relative valuation
of stocks and bonds and, thus affects the optimal portfolio composition of investors.

This research utilizes a multistage mean-variance optimization model that maximizes
total expected wealth and minimizes expected risk at the end of investment horizon [6, 26].

*Corresponding Author



Multistage linear or quadratic stochastic programming is used to model the portfolio allo-
cation problem; see for example [8, 15, 16]. Uncertainty on future behaviour of the asset
returns is represented by a scenario tree. A scenario tree is a discrete approximation of a
multivariate continuous distribution [11, 12, 14]. In multistage linear stochastic program-
ming models, the approximate nature of the discrete set of scenarios can be improved using
a risk representation. The risk is represented by the variance of portfolio returns [16].

Taxes play an important role in the decisions of individual investors. This is often larger
than transaction costs or any other effect for many investors. It is important for an investor,
to consider the effect of taxes on all investment decisions, including optimal asset allocation.
Post-tax optimization determines a discrete-time optimal after-tax asset allocation over an
investment horizon within the mean-variance framework. The specific tax rules within a
wrapper (defined as a collection of assets) are integrated with multistage mean-variance
optimization to yield an overall post tax risk return efficient investment strategies.

In [19], we develop a post-tax model for investments. In [20], we consider stochastic
linear versus stochastic mixed integer linear programming models for post-tax portfolio
optimisation. The present study considers a different approach which integrates risk, mea-
sured in terms of post-tax portfolio variance, and provides a tool for evaluating the best
strategy in view of the risk aversion of the decision maker. It also provides an extensive
sensitivity study of tax changes versus attitudes to risk. In [?], we consider detailed linear
and quadratic (mean-variance) mixed-integer programming formulations for the post-tax
model incorporating the general ability to withdraw from capital as required. In the present
paper, we restrict withdrawals each year to the amount of post-tax income during the year
and provide a detailed study of tax-impact.

Feldstein and Hubbard considered the relation between taxation and portfolio composi-
tion in [7], and [13]. The trade-off between seeking maximum expected return and minimum
risk while taking into account the tax consequences of investment decisions does not seem
to have received sufficient attention. There are well established methods for pre-tax port-
folio management. However, for portfolio management in view of taxation, or portfolio
performance evaluation after-tax, does not seem to have been studied.

Stein has proposed a technique to measure a portfolio value after tax in [22]. Further-
more, in [23] Stein has investigated the diversification dilemma in the presence of taxes and
the sensitivity of key parameters such as the initial holding and investment horizon, with-
out an integrated approach to taxation and the determination of optimal portfolios. The
relation between risk and capital income tax has been investigated by Asea et. al [1] and
the benefits of risk diversification in multiple stock portfolios by Vassal [24]. Dammon et.
al characterized the optimal dynamic consumption and portfolio decisions in the presence
of capital gains taxes and short-sale restrictions, [4] and [5]. They evaluated the optimal
decisions as a function of the investor’s age, initial portfolio holdings, and tax basis. Only
fixed return values and direct assets investment are considered in these. The present study
is the first of its type to introduce wrappers and forecast returns scenarios with associated
risk. Our computational results show that taxes, combined with other effects such as risk
and investment upper bounds, have a significant performance impact on portfolio alloca-
tion, diversification over wrappers as well as asset distribution. The paper is organized as
follows. In Section 2, we present the notation and stochastic linear and quadratic program-
ming models. Section 3 explains our computational experiments. Results are reported in
Section 4.



2 Multistage Mean-Variance Model

2.1 Notation

The notation used for post-tax portfolio optimization is described in Table 1. We represent
vectors in IR" in boldface. The transpose of a vector and matrix is denoted by the symbol .
The subscript indicates either time period, or events.

2.2 Scenario tree

We consider n risky assets and construct a portfolio over an investment horizon 7. The
portfolio is restructured over a period in terms of both return and risk. After the initial
investment (¢ = 0), the portfolio may be restructured at discrete times ¢t = 1,...,7 — 1,
and redeemed at the end of the period (¢t = T).

The random variables are the uncertain return values of each asset on an investment.
The discretization of the random values and the probability space leads to a framework in
which a random variable takes finitely many values. Thus, the factors driving the risky
events are approximated by a discrete set of scenarios, or sequence of events. Given the
event history up to a particular time, the uncertainty in the next period is characterized
by finitely many possible outcomes for the next observation. This branching process is
represented using a scenario tree. See [20] for more specific details of the description of the
scenario tree, but a summary as follows. A scenario is a possible realisation of the stochastic
variables. Hence, the set of scenarios corresponds to the set of leaves of the scenario tree,
N1, and nodes of the tree at level ¢ > 1 (the set N}) correspond to possible realisations of
pt. The set of all interior nodes of the scenario tree is A7. A node of the tree is denoted
by e = (s,t), where s is a scenario (path from root to leaf), and time period ¢ specifies a
particular node on that path.

At each node of time period ¢, decisions for weights of each asset, transactions for buying
and selling wy, by, s¢, respectively, must be determined. Due to the recourse nature of the
multistage problem, decision variables w;, b; and s; are influenced by previous stochastic
events p’, and hence w; = w;(p?), by = b;(p'), and s; = s;(p’). For simplicity, we shall
use the terms w;, b; and s;, and assume their implicit dependence on p’. Notice that p,
can take only finitely many values.

In this paper, we only consider the simulation based approach to generate the scenario
tree. For further details, the reader is referred to [14].

2.3 Tax Rules and Wrappers

A wrapper is a set of assets with a specific set of tax rules on a regular basis and
in different investor scenarios. We consider the UK tax rules within three wrappers,
namely offshore bond, onshore bond and unit trust. Investments in each wrapper may
include equities, bond, cash and property. The superscript for the type of wrappers k =
1,2, 3 for offshore bond, onshore bond and unit trust, respectively is used in the problem
formulation. The description and rules regarding the tax properties of the wrappers are
specified by Chadwick-Healey et. al in [3].



Symbols and Input Data

1 =(1,1,1,...,1)

u'v = ujv1 + ugvg + ... + Uy, (Inner product)

uov = (u1v1, UV, ..., unv,) (Hadamard product)

n number of investment assets.

T investment planning horizon

L Lower percentage bounds

U Upper percentage bounds

Py vector of stochastic data observed at time ¢,t=0,...,T

pt history of stochastic data up to ¢

N; set of nodes of the scenario tree at time ¢

S index denoting a scenario (path from root to leaf)

e = (s,t) index denoting an event node of the scenario tree

a(e) ancestor of event e € N (parent in the scenario tree)

Pe branching probability of event e: pe = Prob[e|a(e)]

P, probability of event e: if e = (s, 1), then Pe = [,_;_;P(s.)

E[] Expectation with respect to p

A, € R™™  covariance matrix of capital gains

Ag € R™"™  covariance matrix of dividends or returns

ct(ph) percentage capital gains, t =1,...,T

d(p?) percentage dividends or returns ¢ = 1,...,T.

e expectation of c;(p?) for event e, conditional on p' !

de expectation of d;(p’) for event e, conditional on p'~!

Ce realization of c; in event e: ce ~ N(&(p'), A.)

de realization of d; in event e: de ~ N(dy(p?), A)
Tax Rates

tgp tax on gross returns of offshore bond

tob tax within onshore bond

tor tax at the end on gross returns from onshore bond

tine vector of income tax paid on dividends or income

CcaG,y capital gains tax at period ¢

icy initial cost for wrapper k (as percentage of investment in wrapper)

ac annual cost for wrapper k (as percentage of investment in wrapper)
Decision Variables

W, total portfolio value, across wrappers

w amount of money held in each asset

b amount bought of each asset

st amount sold of each asset

hf tax-deferred or tax-free withdrawals

g withdrawals subject to immediate tax

RS cumulative returns

Table 1. Notation



Returns are obtained as dividends, income, and capital gains from instruments within
each wrapper. Dividend is the percentage return obtained from equties and bonds and
income for cash assets or proporties. The capital gains is the percentage growth in the
capital value of the assets in the portfolio.

Taxes are payable in different ways for different wrappers and assets. Taxes are imposed
in specific situations according to the wrapper utilized. The main taxes applicable in this
paper are income, capital gains, tax within an onshore bond wrapper and tax on gross
returns. In addition, we assume that an investor is allowed to withdraw some amount of
money from different wrappers with different tax regulations.

Income tax, t;,., is paid annually in unit trust wrapper for the returns received at that
year as 256% for UK dividend income 32.5% for non UK dividend income and 40% for the
interest income.

Profit obtained by disposal of certain types of assets and wrappers, then the capital
gains tax is subject to capital gains tax. Taper relief, a gradual reduction of the amount
of tax payable, is also provided depending on the length of time shares or property has
been held. The longer the time horizon until encashment, the lower tax is payable. If it is
for three years or less, then 40% capital gains tax is payable. From fourth year onwards,
tax reduces by 2% per annum. After eleven years, the maximum taper relief is achieved as
24%.

Tax charge in an onshore bond wrapper arises annually withing a fund, which is usually
22%. Tax on gross returns is paid on the encashment of onshore and offshore bond wrappers.
Tax of 18% is due for any income and gains arising are in onshore bond. In offshore bond
there is no tax arise on income or gains until on encashment; but the tax rate is of 40% on
encashment.

Withdrawals may only be taken from the gains since the original capital must remain
in the wrapper until encashment. In onshore and offshore bond, investors can withdraw
5% of initial capital with tax defer until the end of investment horizon. Unused portions
of the annual allowance of 5% may be carried forward, i.e. if no withdrawals are taken
until year four, then tax deferred withdrawals as large as 20% of original investment is
allowed. Withdrawals beyond the cumulative 5% limit may also be taken, but are subject
to immediate tax at the encashment rate of ¢g,.

In unit trust wrapper, withdrawals may be taken from the current year’s growth only.
As dividend and income returns have their taxes paid annually, withdrawals can be taken
from them without further tax. However, withdrawals from growth due to capital gains are
subject to tax.

The bank claims an annual percentage fee (acg) from the total value of any wrapper
and charge a percentage for initial setup (icy) for a wrapper k£ = 1,2, 3.

2.4 Stochastic Linear Programming (SLP) Model

Many traditional multistage portfolio analysis programs seek only to maximize expected
return. Referencing previous results, this can be achieved with a linear programming
formulation; for more information on stochastic programming, the reader is referred to
[2, 9, 10, 21, 26]. For post-tax optimization the strategy implemented is the classical
stochastic programming approach (SLP) which incorporates the mean term. This is a
risk-neutral approach which does not take risk-attitudes into account.



The SLP Model
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The linear constraints in the SLP model describe the allocation of initial investment,
the computation of expected net redemption for each wrapper, money growth and profit
transfers between assets at each time period, accumulation of returns, and withdrawals as
well as the bounds on decision variables.

Notice that the anual bank fees deducted by term (1 — acg) for £ = 1,2,3 must be
augmented by the bank’s initial setup fees in the first year. For e € N (children of the
root scenario node, the terms becomes (1 — icy — acy).-

The objective function is to maximize total expected net redemption value obtained
from each wrapper, which can be balanced to find efficient post-tax investment allocations.
For more details of the SLP model, the reader is referred to [20].

2.5 Stochastic Quadratic Programming (SQP) Model

The SQP approach attempts to inject risk aversion into the optimization model. It incor-
porates the quadratic variance term and permits the minimization of the variability of the
terminal wealth given observed statistics. This assumes that the investor is risk averse and
ensures a degree of risk aversion by the investor by relaxing the certainty of the return
values along a given leaf of the scenario tree. The other objectives that naturally lead to
diversification by taking risk-attidues into account such as utility and minmax have been
described in [27, 25].

An important assumption underlying the mean variance approach adopted is the the
normality of the return distributions. This is clearly not the case for asset classes such as
property and bonds. However, for investments of long term maturity and for indeces of the
corresponding asses class, we assume this to be an acceptable approximation as far as risk
assestment is concerned.

The variance of wealth at time ¢ of a particular wrapper k can be calculated as
Var[1'wF] = Var[(cFe; + d*dy)'wl ] (1)
2
= B [((fes + d*dy)'wf 1)?] = (B[(cFeq + d*dy)'w) 1)) (2)
2

Il
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where ¢ and dF are scalar factors for capital gains ¢; and dividends or income returns
d;, respectively. The total return is expressed in terms of capital gains and dividends or
income returns. These scalar constants are determined by the nature of annual taxation in
the wrapper. The following table lists the values for all wrappers

Notice that for any random vector y, E [yy'] is equivalent to the covariance matrix of
y — as well as the assumption that capital gains (c) are independent from dividends or
income returns (d), which eliminates the term E [e;d}] = 0.



Wrappers c d*
offshore bonds k=1 | (1 —acy) (1 —ac)
onshore bonds k=2 || (1 — acz) (1 —acy)
unit trust k=3 || (1 —ac3) (1+ tinc)(1 — acs)

Financial reality dictates that the highest-performing portfolio strategy is also the most
risky efficient strategy available. In order to obtain other points on the Markowitz efficient
frontier, it is necessary to consider risk (variance), in conjunction with the mean return. In
this case, the required expected net redemption value can be provided as constant Wy. The
SQP problem whose optimum is the efficient (least risky) multistage investment strategy
can be outlined as the following optimization problem.

The SQP Model

T-1 3
minimize Variance = Z Z Z P [W’;I(e) ((Ck)zAc + (dk)ZAd) W,;(e)]
=0 k=1e€eN;
subject to

Constraints of SLP problem
Mean > Wr

The optimal investment strategy yields expected post-tax wealth of Wr subject to other
linear constraints defined in SLP problem. By varying Wr from a risk-seeking strategy
(obtainable by the SLP presented in Section 2.3) to a risk-averse strategy (obtainable
by optimizing the above SQP without the performance constraint, Mean > Wr), the
efficient frontier can be generated. In general terms, the efficient frontier is obtained as
follows. The maximum-mean SLP problem is first solved to find the risk-seeking strategy;
that is also the maximum expected net redemption value, Wyax. The minimum expected
net redemption value, Whin, is then computed by solving the SQP problem without the
performance constraint, Mean > Wry. Its optimal constructs the risk-averse strategy. For
a number of equally-spaced points Wr € [Wiin, Wiax), the corresponding SQP(Wr) is
optimized. The different investment strategies at different risk levels generates the points
along the efficient frontier.

3 Computational Experiments

3.1 Implementation

The post-tax mean-variance optimization model explained in the previous section is imple-
mented and integrated with a software package called posttaz. Posttaz is written in C++
and uses the interior point linear/quadratic solver BPMPD [17] to optimize the linear and
quadratic programming problems. Posttax has the ability to handle simple box constraints
on the decision variables, as well as percentage constraints. The scenario trees input to the
program can have arbitrary branching structure and depth (limited only by computer mem-
ory). All computational experiments are carried out on a 500 MHz Pentium III, running
Linux with 256Meg of RAM.



3.2 Case Study

In order to illustrate tax impact on the performance of the post-tax mean-variance opti-
mization model, we consider a classic example in which an investor who has just sold a
major business and wishes to invest efficiently for the future, perhaps towards retirement.
Annual withdrawals are imposed, along with a choice of investment horizon that activates
taper relief for the capital gains tax. The optimal investment strategies are computed using
a scenario tree generated by simulation [14].

An investor has sold a factory and would like to invest £10,000,000 in a bank for the
nezt eleven years. He would like to get an annual withdroawal of £500,000 for the next 10
years. How would he have to invest his wealth in order to mazimize the amount he will
receive at the end of the eleven years period?

3.3 Input Data

For the data used in the case study, the statistical parameters were measured from historical
data: 151 monthly valuations of cash, bonds, and equities in the UK market, from 1988
to mid-2000. The historical data of the three assets (cash, bonds, and equities) was fit to
an exponential growth curve. The obtained monthly growth rates were annualized, and
used to simulate future growth. A covariance matrix was measured from the residuals of
the exponential fit, and used in the simulation based scenario generation method (after
assuming cash is risk-free).

A scenario tree with different values in income or dividend and capital gains is an input
to the post-tax mean-variance optimization models. We generate a scenario tree with four
branching at the first year and then only one branching over 10 years using simulation
based approach. The event tree with this topology has 44 nodes and 4 final scenarios. The
four-scenario tree is one year a head forecast for the whole periods.

The investment horizon has been considered as 11 years since beyond year 11, the
capital gains tax (paid for the capital gains in unit trust) remains unchanged and no more
taper relief can be achieved. The length of the investment is a very important fact for
the distribution to be chosen. Time periods shorter than 11 years do not make use of the
complete taper relief available in unit trust and very longer periods with large withdrawals
will make full use of the facilities offered by offshore or onshore bonds about tax deferred
withdrawals at the beginning of the investment plan. Besides, the model is highly sensitive
to any small change in taxes, costs and bond values, and amount of withdrawals. Input data
for taxes used for this example is summarized in Table 2. For scenario trees obtained with
simulation and clustering, return values presented in Table 3 are used as seed for returns
in the trees and obtained by fitting the 11 years of historical data to exponential growth
curve. In addition, we assume 1.15% annual and 1% transaction costs and zero initial cost.

TAXES Amount (%)
offshore bond end of horizon 40
onshore bond annually 22
onshore bond end of horizon 18
income tax cash 40
income tax equities, bond 25
capital gain every year 40, 40, 40, 38, 36, 34,

32, 30, 28, 26, 24




Table 2. The input data for taxes

RETURNS

Income or Dividend Capital Gains
Equities 3.47 10.40
Bonds 2.72 8.16
Cash 8.34 0.00

Table 3. The input data for returns

An upper bound of 43% (33% = 1/3 for equal proportion plus 10% for more flexibility)
for the total amount of money invested in each asset (independently of the wrapper) is
considered for the computational calculations.

Different percentages in risk level are used to reflect investor’s different attitudes to risk.

4 Computational Results

In our computational experiments, we consider a number factors which have an impact on
the post-tax optimization model presented in Section 2. These factors can be summarized
as follows;

e different values of capital gains tax
e different risk levels

e upper bounds

In order to investigate the tax impact on wrapper and asset allocation, we set all tax
parameters in our post-tax optimization model as zero. This is the “tax-free” case. The
“full taxation” case takes all tax rules into account as well as taper relief for capital gains
taxes. We explore the impact of imposed bounds on asset weights, different rates of capital
gain tax and risk levels.

Tax-free case

We present wrapper distribution and asset allocation for each wrapper with bounds at 43%
and risk levels at the lowest (selected as 25%) and the highest (specified as 100%) in Figures
1 and 2, respectively. The results in Figure 1 and Figure 2 indicate that, while the model
gives some diversification over wrappers, asset allocation for each wrapper has diversified
and the structure of diversification on assets remains the same for all wrappers.

In order to show the impact of bounds on post-tax optimization models with different
risk levels, we set investment upper bounds on assets as 1. In practice this is equivalent
to not imposing any bounds except the budget-limit. Wrapper allocation and the asset
allocation within offshore bonds (arbitrarily selected as an example) at different risk levels
(such as 25%, 50%, 75%, 100% at each row, respectively) are presented in Figure 3.

We find that optimal investment strategies are robust to changes in taxation over wrap-
pers for the risk-averse investor (at low risk such as 25% and 50%). That is the investment
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strategy does not change appreciably when the tax levels change. However, if the risk
level is increased towards more risky investments such as 75% or 100%, we observe some
sensitivity.

Full Taxation case

We consider the influence of full taxation and bounds at different levels of risk. The results
of wrapper diversification and asset allocation within Offshore bonds with and without
bounds at different risk levels such as 25%, 50%, 75%, 100% are presented in Figures 4 and
5, respectively. As expected, bounds play a decisive role in diversification over wrappers
and assets for any level of risk. In case of no upper bounds, it is the risk aversion factor
that mostly influences investment decisions. This is independent of tax values.

Comparing the results in Figure 3 and Figure 5 (with a tax-free and a full taxation
scenarios respectively), we observe that wrapper allocation is always diversified. However,
for asset allocation, there is a turning point according to the risk level in the investor’s
decision. The risk-averse individual will invest all money in cash while the risk-seeker will
choose equities. A more balanced attitude at 50% or 75% of risk level will tend to diversify
over assets.

Capital Gains Tax (CGT)

We also investigate the sensitivity to changes in the values of capital gains tax on post-
tax optimization models. We consider the minimum (24%) and maximum (40%) as well
as the average capital gain tax rate (33.45%), as fixed rates over the investment horizon.
The results in Figures 6 and 7 are obtained by considering the lowest 25% (the left side)
and highest 100% risk levels (the right side) with minimum (the first row), average (the
second row) and maximum (the last row) capital gains tax rate. We have done a sensitivity
analysis in terms of diversification over wrappers in Figure 6 and asset allocations within
Offshore Bond (arbitrarily selected) in Figure 7.

The results indicate that the overall allocation for wrappers and assets is robust to
changes in the value of capital gains tax for risk averse investors (at 25% risk level). How-
ever, there is great sensitivity to those changes for the risk-seeking investor (100% risk
level).

5 Conclusions

Taxation generally affects the net redemption value of investment strategies. However, un-
der certain circumstances, the strategy (i.e. the proportion of current total wealth invested
in a given asset class), itself might be robust to changes in taxation. Such robustness will
be the result of imposing upper bounds on the proportion of the wealth invested in a given
asset in order to impose diversification or the specification of a high degree of risk aversion
(low risk investment policies) in the multi-period Markowitz framework of this paper. The
latter two entail diversification. The best strategy is determined in view of the withdrawals
and other requirements of the investor, and taper relief related to capital gains tax. High
levels of risk aversion seem to render the optimal strategy insensitive (i.e. robust) to changes
in taxation. This is assisted by the imposition of investment upper bounds.
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Without any explicit upper bounds imposed on investments, an increased level of risk
aversion seems to have a dampening effect on the response of the investment strategy to
changes in taxation. For example, at a high degree of risk aversion, we have observed
the ordinary tendency for investing in cash, which does not attract capital gains tax, and
therefore an increasing in the latter tax would not affect the strategy or distribution over
wrappers. This robustness disappears on the more risk seeking end. Investment in more
risky asset classes such as equities and bonds attracts capital gains. This activates greater
use of the offshore bond wrapper. An increase of capital gains tax leads to a migration
from offshore bond to unit trust.
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Figure 1: Tax-free case with bounds: wrapper and asset allocation at 25%
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for offshore bond. Portfolio growth in various scenarios: Total portfolio growth in
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Figure 6: Sensitivity Analysis: wrappers allocation for different CGT at 25% and 100%
risk. Portfolio growth in various scenarios: Total portfolio growth in three wrappers

for the four scenarios
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