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Abstract: - We use Surrogate Analysis in Multidimensional Knapsack Problems to create surrogate constraints and Constraint Pairing to combine them with the objective function to generate new constraints that we use to fix variables and to generate logic cuts, using an initial feasible integer solution. We included these logic cuts in the model before solving the problem with branch and bound. Our computational testing, includes the set of small problems and the first subset of big instances in the OR-library. We compare the effect of the different sets of logic cuts added to the model. It can be seen that any set of logic cuts helps to solve difficult problems with a fewer number of nodes in the search tree.
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1   Introduction
In this paper, we present an integrated cutting and surrogate constraint analysis strategy for the NP-hard, multidimensional knapsack problem (MKP), which can be formulated as: 

   Maximize  z =    cj xj


(1)

                         j 
      subject to         aij xi    bi
i   

(2)

                                            j                  
         

    xj  {0,1},  
j     

(3)

where N = {1,2 ,…, n}, is the number of objects to put in the knapsacks,  M = {1,2 ,…, m} the number of knapsacks, where each knapsack is represented by one constraint, and  cj  0 is the value or profit of object j, for all j , aij  0 is the weight or ‘size’ that object j has in knapsack i, for all i , j . 

The Multidimensional Knapsack Problem has received wide attention from the operations research community, because it embraces many practical problems. In addition, the MKP can be seen as a general model for any kind of binary problems with positive coefficients, see Glover et al [12]. 

The development of exact algorithms for the MKP began several decades ago (Dantzig [4], Balas [1], Glover [10]). There exists a main stream of algorithms that try to find upper or lower bounds for the objective value, to reduce the problem size and use information from its relaxations, and to employ search trees in branch and bound schemes. The algorithm presented in this paper belongs in this mainstream. 

The Constraint Pairing ideas used here were developed by Hammer et al. [15] and used later by Dembo and Hammer [5], as a support of a Reduction Algorithm for Knapsack problems that uses Constraint Pairing in a Lagrangean Relaxation framework. Glover established the main principles of his Surrogate Constraint Duality Theory in the same year (Glover [11]), stimulating a series of algorithmic developments that used surrogate constraint analysis as an alternative to relying on weaker relaxations provided by Lagrangean Relaxation Theory.

Crama and Mazzola [3] showed that although the bounds derived from the well-known relaxations, such as Lagrangean, surrogate, or composite, are stronger than the bounds obtained from the linear programming (LP) relaxation, the improvement obtained with these relaxations is limited. In particular, they showed that the improvement in the quality of the bounds using any of these relaxations cannot exceed the magnitude of the largest coefficient in the objective function.

Heuristic algorithms developed for the MKP can be roughly grouped into the early heuristic approaches, bound based heuristics (which make use of an upper bound on the optimal solution to the MKP), tabu search heuristics, genetic algorithm heuristics, and analyzed heuristics (with some theory relating to worst-case or probabilistic performance). Hanafi and Fréville [16] developed an efficient Tabu Search approach for the 0-1 multidimensional knapsack problem. Chu and Beasley [2] presented an extensive analysis of the problem, using a Genetic Algorithm and testing it on a data set with 270 problems, now in the OR-library, that included instances with 5, 10 and 30 knapsack constraints, 100, 250 and 500 variables, and the RHS coefficients in the constraints generated as 0.25, 0.5 and 0.75 of the coefficient sums in every knapsack. We used the first part of this data set in our computational experiment.

2. Dual Surrogate

As defined by Glover [9], a surrogate constraint is an inequality implied by the constraints of an integer program and designed to capture useful information that cannot be extracted from the parent constraints individually, but which is nevertheless a consequence of their conjunction. 

The integer program can be written as:

Minimize 
cx
subject to 
Ax ( b
0 ( x ( e
and 

x integer

Since Ax ( b implies b  Ax ( 0, we have for a nonnegative weighting vector u that u(b  Ax)  ( 0 is a surrogate constraint. A value of u is selected which satisfies a most useful or a “strongest” surrogate constraint definition as given in Glover[9], [10]. It has been shown by Glover [11] that u comprises the optimal values of the variables of the dual linear program of the corresponding relaxed LP and that the weighting vector in a strongest constraint consists of the optimal dual variables of the associated linear program.

Optimality conditions for surrogate duality are the requirements that the surrogate multiplier vector u is nonnegative, x is optimal for the surrogate problem, and x is feasible for the primal problem. ‘Strong’ optimality conditions add the requirement of complementary slackness. A complete derivation of this theory can be seen in Glover [11]. The methodology proposed here draws on these fundamental results.

3. Paired Constraint

The main ideas about constraint pairing in integer programming were exposed by Hammer et al. [15]. Based on the objective of getting bounds for most variables, the strategy is to pair constraints in the original problem to produce bounds for some variables.

Based on the results exposed about surrogate constraints, the dual surrogate constraint provides the most useful relaxation of the constraint set, and can be paired with the objective function. 

We can generate two type of dual surrogate constraints, using the bounds xi ( 1 as part of the LP relaxation (as in Osorio et al [20]), or excluding simple bounding constraints as component constraints (as in Osorio et al [21]). 

The surrogate constraint can be written as:


ui (aij xj )  ui bi 
j 

(4)

            i i                 

Now, we define   si =    ui (aij xj ) and make the 

                                                      i 

objective function greater or equal to a known integer solution (LB). The paired constraint between the surrogate and the objective function will be, 

 (sjcj) xj  ui bi LB

(5)

                    j                         i
3.1 Combined Constraint

If the resulting surrogate includes the bounds, we have i+N uibi =continuous LP relaxed solution, our current upper bound (UB).  Besides, coefficient values for the x’s whose relaxed values in the LP problem are strictly greater than zero, will be the same as in the objective function, i+Nuj aij  = cj, and the rest between this surrogate constraint and the objective function will yield the combined constraint. 

Obviously, if a sjcj is greater than the value UB–LB, the corresponding xj must be zero in the integer solution. If we eliminate all terms whose x values in the relaxed LP solution are strictly greater than zero, we will get a new constraint with the form of equation (5), fewer variables in the left side, and with a right hand side equal to the gap, UBLB. This inequality will not only be used to fix x variables to zero, but also will be used as a knapsack with positive coefficients to get effective logic cuts. We will call it “combined constraint” in the following sections.

3.2 Mixed Constraint

On the other hand, if the bounds are not included, coefficients for this paired constraint can be positive, negative or zero. We substitute yj=1– xj in the negative coefficients (sjcj) to get positive ones (sjcj)’and add the equivalent value in the right hand side. The resultant constraint is, 

 (sjcj)xj   (sjcj)’yj  ui bi  (sjcj)’LB (6)      jsj(0          j sj<0                  ij sj<0        
An interesting property of (6) is that the positive coefficient values are the negative reduced costs for the variables in the LP solution and the negative values correspond to the negative dual values of their bounds in the LP solution. Besides, the value of  ui bi  s’j is the optimal solution of the LP ij sj<0
problem (UB), and the right hand side of this paired constraint becomes the difference between the upper bound that corresponds to the LP solution and the lower bound that corresponds to the best known solution for the problem (UB–LB). The resultant constraint is used to fix variables to zero or one,

 (sjcj) xj   (sjcj)’ yj  UB LB 

(7)  jsj(0            j sj<0        
If coefficients (sjcj) of xj are greater to the difference (UB-LB), those variables must be zero in the integer solution; if the coefficients (sjcj)’ of yj are greater to the same difference, those variables must be one in the integer solution because its complement, yj must be zero. Variables whose coefficients are smaller than the difference remain in the problem.

The remaining terms in inequality (7), constitutes a knapsack with positive coefficients to get logic cuts. It will be called “mixed constraint” in the following sections.

4. Logic Cuts

A logic cut for an MIP model has been characterized as an implication of the constraint set. Actually any logical formula implied by the constraint set as a whole is a logic cut. A cut may be added to the problem without changing the optimal solution, but it may exclude feasible solutions (see Hooker [17 ]). An intuitive understanding of a problem can suggest logic cuts, even when no further polyhedral cuts are easily identified. The idea of a logic cut was defined by Hooker et al. [18], who used process synthesis as an example. 

Whereas a cut in the traditional sense is an inequality, a logic cut can take the form of any restriction on the possible values of the integer variables, whether or not expressed as an inequality. Logic cuts can therefore be used to prune a search tree even when they are not expressed as inequality constraints in an MIP model. But they can also be imposed as inequalities within an MIP model, in which case they can tighten the linear relaxation and cut off fractional solutions as traditional cuts do.

Knapsack constraints are often used to generate logic cuts, in the form of extended inequalities, which can be easily manipulated. The logical clauses implied by a knapsack constraint are identical to the well-known “covering inequalities” for the constraint, and their derivation is straightforward (see Granot and Hammer [14]). Examples with logic cuts generated from knapsack constraints include location problems in Osorio and Mújica [23], and multilevel generalized assignment problems in Osorio and Laguna [22].

While it is hard to derive all the extended inequalities implied by a knapsack constraint, it is easy to derive all contiguous cuts. Consider a 0-1 inequality dy  for which it is assumed, without loss of generality, that d1  d2  …  dn  > 0. Note that  if dj < 0, its sign is reversed and dj is added to . 

A contiguous cut for dy  has the form,

               t + w + k - 1
     yj k,

(8)

                    j = t

where k is the degree of the cut and w < n is the “weakness” (with w = 0 indicating a cut that fixes all of its variables). In particular (8) is a t-cut because the first term is yt and it is valid if and only 

                 t + k - 1           n

 dj  +   dj < 


(9)

j = 1       t + w + k

Furthermore, Hooker and Osorio [18], showed that every t-cut of weakness w for dy   is implied by a 1-cut of weakness w. Therefore, generating 1-cuts can be equivalent to generate all t-cuts in terms of infering values for the binary variables. Fig.1 shows the algorithm that generates the 1-cuts we used for this problem. These cuts are generated in linear time. 

Let k = 1, s = nj=1 dj,   klast = 0.

For j = 1, …, n:

       Let s = s - dj.

         If (s < δ) then
             While (s + dk < δ)
                         Let s = s + dk  

                         Let k = k + 1

    If (k > klast) then
                     Generate the cut y1 +  … + yj  k.

                      Let klast  =  k 

Fig. 1 An algorithm for generating all 1-cuts for a knapsack constraint  

dy  in which d1  d2  …  dn  > 0.

The inequality (5) has information from the dual surrogate constraint and from the objective equation. It also has fewer variables with nonzero coefficients than a customary logic cut, because we set xj = 0 or 1 for all sj– cj values greater than the value of (UB – LB). Now, we have only one knapsack, with a reduced number of variables, to generate cuts.

We can split the variables in (5), sending to the right hand side the terms whose x’s are presented in the last cut generated. Now, using the worst case, we get the following inequality,
     cj xj    LB max (    cj xj 
j ′                                                j ″
where N” is a set that contains the indexes of the variables present in the last cut generated from (5) and N’ is a set with the indexes not present in that cut. The cuts already generated impose a limit on the value of max ( cj xj We take that limit and make z’ = LB max (  cj xj  to yield
      
         

                      j ″
              j ″
   cj xj   z’



(10)

              j ′ 
Now, we use (10) for generating nested logic cuts of type “greater equal”. These cuts will be called “nested cuts” in the following sections.

 Our computational results, compare the impact of the logic cuts generated from the surrogate including bounds, the surrogate without bounds, the “combined constraint”, the “mixed constraint”, the objective function and the nested objective function.

To test the effectiveness of these cuts in our experiments we use the number of nodes in the search tree because there is no reasonable theory of "tightness" for cutting planes (other than to check whether a cut is supporting or facet defining).  Usually, the measure of the effectiveness of covering cuts and logic cuts can be obtained by comparing the size of the search tree (number of nodes) with and without the cuts. The search tree size is relatively an intrinsic measure (Hooker and Osorio, [18]).  

5. Example

To illustrate the procedure described, let us consider the following example with 10 variables and 1 constraint:

Maximize

40x1+49x2+24x3+36x4+40x5+30x6+32x7+16x8+27x9+9x10
Subject To

5x1+7x2+4x3+6x4+8x5+6x6+8x7+4x8+9x9+3x10 ( 33

xj{0,1},  



j=1,…,10

After solving the relaxed LP problem, the corresponding dual values are uj={5,15,14,4,6,0,0,0, 0,0,0}. Reduced costs for the variables are {0,0,0,0,0,0,-8,-4,-18,-6}. This problem has a continuous LP solution value of 204 (UB), and a known integer solution of 198 (LB). The objective function yields the following constraint: 40x1 + 49x2 + 24x3 + 36x4 + 40x5 + 30x6 + 32x7 + 16x8 + 27x9 + 9x10 ( 198 

The surrogate constraint excluding the bounds xj1 is: 25x1 + 35x2 + 20x3 + 30x4 + 40x5 + 30x6 + 40x7 + 20x8 + 45x9 + 15x10 ( 165, and the resulting “mixed constraint”, obtained by substracting the objective function from the surrogate, is 15x1 –14 x2 – 4 x3 – 6 x4  + 8 x7 + 4 x8 + 18 x9 + 6 x10 ( –33.

The mixed surrogate constraint with all positive coefficients is, 15 y1 + 14 y2 + 4 y3 + 6 y4 + 0 x5 + 0 x6 + 8 x7 + 4 x8 + 18 x9 + 6 x10 ( 6. From this constraint, we can deduct that y1, y2, x7 and x9 must be zero to fill the constraint. It means, x1= x2= 1 and x7= x9=0 in the integer (MIP) problem.

The surrogate constraint, including the bounds xj1, is: 40x1 + 49x2 + 24x3 + 36x4 + 40x5 + 30x6 + 40x7 + 20x8 + 45x9 + 15x10 ( 204. The “combined constraint”, obtained by substracting the objective function from the surrogate is, 8x7 + 4x8 + 18x9 + 6x10 ( 6. From this constraint, we can deduct x7= x9=0 in the MIP model. The resulting combined constraint is  4x8 + 6x10 ( 6. 

5.1 Logic Cuts for the Example

From the objective function, we can get the following cuts:

x3 + x4 + x5 + x6  ( 3

 x3 + x4 + x5 + x6  + x8  + x10 ( 4.

From the surrogate constraint excluding the bounds xj1, we get:

x3 + x4 + x5 + x6  ( 3

 x3 + x4 + x5 + x6  + x8  + x10 ( 4.

From the “mixed constraint”, we can get:

–x3 –x4 + x8 + x10  ( –1

From the combined constraint, we will deduct:

x8 + x10 ( 1. 

For this example, we can not get any “nested logic cut”.

6. Computational Results

We tested our approach in two experiments. For the first experiment we used small real-world problems already published in the literature and available in the OR-Library. For the second, we used the first 30 instances of the set of 270 large problems developed by Chu and Beasley[2] and also available in the OR-library with access at http://mscmga.ms.ic.ac.uk/.

In this research, we used the solutions obtained by Osorio et al[20] as LB. We solved all the problems on a Pentium IV,  1.8 GHz and 512 MB of RAM, using the general purpose software for optimization, CPLEX V8.5.

6.1 Results for small problems

The first experiment for testing the influence of these cuts was made in small real-world problems consisting of m = 2 to 30 and n = 6 to 105 and their optimal solutions are known. Many of these problems have been used in studies by other authors. The number of the problems in the set, the average number of variables, the average number of constraints and the number and percentage of variables fixed to zero and one, can be seen in Osorio et al [21].

In table 1, Column 1 shows the name of the author who first used these problems. Column 2 shows the number of nodes in the searching tree without cuts in the model. Columns 3 to 7 show the average number of nodes for the different type of logic cuts, for each set. 

Tables 1 and 2 use the terminology described in sections 4 and 5. ´Surr.’ means cuts generated from the surrogate without bounds, “Obj.”, cuts generated directly from the objective function, “Mix.”, cuts from the mixed constraint, “Com.”, cuts generated from the combined equation, “Surr.+Obj.”, the addition of both type of cuts in the model (from the surrogate and the objective function), and finally, “Com.+Nes.”, the addition of cuts from the combined equation and from the nesting constraint.

	OR-LIB

File
	NO

Cuts
	Surr.
	Obj.
	Mix.
	Com.
	Surr.

+Obj
	Com.Ne

+Nes

	Beasley

SENTO

WEING

WEISH

PB
	13.83

360.5

  6.33

36

 5.4

14.25

17.25

 8.25

21.25

22.5

  5

286.8
	12.83

356.5

  6.33

25

  5.6

14.25

17.25

  8.25

21.25

22.25

  5

286.8
	12.83

393.5

  4.83

25

  4.6

13.5

16

  8

19.75

21.5

  2.75

274
	12

359

  5.17

22.5

  5.8

11.2516.75

16.75

   8

 17.5

 22

   5

283.8
	12.83

356.5

  5.67

25

  5.4

14.25

14.75

  7.25

21.25

22.25

  5

288.7
	12.83

393.5

  3.83

26

  4.6

  9.5

16.5

  7.25

19.5

20.75

  1.75

274
	13.83

356.5

   6.33

 36

   5

14.25

17.25

  8.25

25

22.25

   5

286.5


Table 1 Results for Small Problems

6.2 Results for Large Problems in OR-Library

For the second experiment, we used the first 30 instances in the set with 270 large MKP instances used by Chu and Beasley [2]. 

This data set was generated using the procedure suggested by Fréville and Plateau [7]. The number of constraints m was set to 5, 10 and 30, and the number of variables n was set to 100, 250 and 500. Thirty problems were generated for each m-n combination, giving a total of 270 problems.

The aij are integer numbers drawn from the discrete uniform generator U(0,1000). For each m-n combination, the right-hand side coefficients (bi’s) are set using the relation, bi  = j  aij, where  is a tightness ratio and =0.25 for the first ten problems, =0.50 for the next ten problems and =0.75 for the remaining ten problems. The objective function coefficients (cj’s) were correlated to aij and generated as follows: cj =   iM  aij/m + 500 dj   jN, here dj is a real number drawn form the continuous uniform generator U(0,1). In general, correlated problems are more difficult to solve than uncorrelated problems (Gavish and Pirkul [8], Pirkul [24]). Results for these problems are shown in Table 2. 

	
	NO

Cuts
	Surr.
	Obj.
	Mix.
	Com.
	Surr.

+Obj.
	Com.

+Nes.

	0.25
	61019
	58524
	78682
	59741
	62777
	59228
	61016

	0.5
	64020
	62231
	62182
	78411
	57281
	65738
	64020

	0.75
	17690
	16983
	16923
	17216
	18257
	17789
	17691


Table 2 Results for problems with 5 constraints and 100 variables

The tightness ratio is shown in column 1. Columns 2 to 8 shows the average number of nodes to solve the problem, of the ten instances with those characteristics, and the addition of the logic cuts indicated in each row.

4   Conclusion

Our procedure augments a branch and cut framework, by a process of fixing variables and adding global cuts. The approach can be applied every time the branch and cut method gets a better integer solution or it can be used as a preprocessing algorithm, based on assuming a bound on an optimal objective value. Our computational experiments show that the preprocessing approach creates an enhanced version of the problem that can be solved in a fewer number of nodes.
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