Exploiting Surrogate Constraint Analysis for Fixing Variables in both bounds for Multidimensional Knapsack Problems
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Abstract

The Osorio et al.[32] exploiting of surrogate constraints and constraint pairing is strengthened to give better results in multidimensional knapsack problems, by excluding simple bounding constraints as component constraints. The surrogate constraint is obtained by weighting the original problem constraints by their associated dual values in the LP relaxation of the problem. This surrogate constraint is paired with the objective function to obtain a combined constraint where negative variables are replaced by complemented variables and the resulting constraint used to fix variables to zero or one.

1. Introduction

In this paper, we present an integrated cutting and surrogate constraint analysis strategy for the NP-hard, multidimensional knapsack problem (MKP), which can be formulated as: 

   Maximize  z =    cj xj


(1)

                         j 
        subject to         aij xi    bi
i         
(2)

                                            j                  
          xj  {0,1},  

j           
(3)

where N = {1,2 ,…, n}, is the number of objects to put in the knapsacks,  M = {1,2 ,…, m} the number of knapsacks, where each knapsack is represented by one constraint, and  cj  0 is the value or profit of object j, for all j , and aij  0 is the weight or ‘size’ that object j has in knapsack i, for all i , j . 

The Multidimensional Knapsack Problem has received wide attention from the operations research community, because it embraces many practical problems. Applications include resource allocation in distributed systems, capital budgeting and cutting stock problems (Gavish and Pirkul [11], Shih [35], Gilmore and Gomory [12]). In addition, the MKP can be seen as a general model for any kind of binary problems with positive coefficients (see Glover and Kochenberger [16]). 

The development of exact algorithms for the MKP began several decades ago (Dantzig [6], Balas [2], Glover [14]). There exists a main stream of algorithms that try to find upper or lower bounds for the objective value, to reduce the problem size and use information from its relaxations, and to employ search trees in branch and bound schemes. The algorithm presented in this paper belongs in this mainstream. 

The Constraint Pairing ideas used here were developed by Hammer et al. [20] and used later by Dembo and Hammer [7], as a support of a Reduction Algorithm for Knapsack problems that uses Constraint Pairing in a Lagrangean Relaxation framework. Glover established the main principles of his Surrogate Constraint Duality Theory in the same year (Glover [13]), stimulating a series of algorithmic developments that used surrogate constraint analysis as an alternative to relying on weaker relaxations provided by Lagrangean Relaxation Theory.
Crama and Mazzola [4] showed that although the bounds derived from the well-known relaxations, such as Lagrangean, surrogate, or composite, are stronger than the bounds obtained from the linear programming (LP) relaxation, the improvement obtained with these relaxations is limited. In particular, they showed that the improvement in the quality of the bounds using any of these relaxations cannot exceed the magnitude of the largest coefficient in the objective function.

Heuristic algorithms developed for the MKP can be roughly grouped into the early heuristic approaches, bound based heuristics (which make use of an upper bound on the optimal solution to the MKP), tabu search heuristics, genetic algorithm heuristics, and analyzed heuristics (with some theory relating to worst-case or probabilistic performance). Hanafi and Fréville [9] developed an efficient Tabu Search approach for the 0-1 multidimensional knapsack problem. Chu and Beasley [3] presented an extensive analysis of the problem, using a Genetic Algorithm and testing it on a data set with 270 problems, now in the OR-library, that included instances with 5, 10 and 30 knapsack constraints, 100, 250 and 500 variables, and the RHS coefficients in the constraints generated as 0.25, 0.5 and 0.75 of the coefficient sums in every knapsack. We used this data set in one of our computational experiments.

2. Dual Surrogate

As defined by Glover [13], a surrogate constraint is an inequality implied by the constraints of an integer program and designed to capture useful information that cannot be extracted from the parent constraints individually, but which is nevertheless a consequence of their conjunction. 

The integer program can be written as:

Minimize 
cx
subject to 
Ax ( b
0 ( x ( e
and 

x integer

Since Ax ( b implies b  Ax ( 0, we have for a nonnegative weighting vector u that u(b  Ax)  ( 0 is a surrogate constraint. A value of u is selected which satisfies a most useful or a “strongest” surrogate constraint definition as given in Glover[13], [15]. It has been shown by Glover [15] that u comprises the optimal values of the variables of the dual linear program of the corresponding relaxed LP and that the weighting vector in a strongest constraint consists of the optimal dual variables of the associated linear program.

Optimality conditions for surrogate duality are the requirements that the surrogate multiplier vector u is nonnegative, x is optimal for the surrogate problem, and x is feasible for the primal problem. ‘Strong’ optimality conditions add the requirement of complementary slackness. A complete derivation of this theory can be seen in Glover [15]. The methodology proposed here draws on these fundamental results.

3. Paired Constraint

The main ideas about constraint pairing in integer programming were exposed by Hammer et al. [20]. Based on the objective of getting bounds for most variables, the strategy is to pair constraints in the original problem to produce bounds for some variables.

Based on the results exposed about surrogate constraints, the dual surrogate constraint provides the most useful relaxation of the constraint set, and can be paired with the objective function. Instead of using the bounds xi ( 1 as part of the LP relaxation (Osorio et al [32]), surrogate constraints can be made stronger by excluding simple bounding constraints as component constraints. 

The resulting surrogate is:

 
 ui (aij xj )  ui bi 
j 

(4)

            i i                 

Now, we define   si =    ui (aij xj ) and make the 

                                                      i 

objective function greater or equal to a known integer solution (LB). The paired constraint between the surrogate and the objective function will be, 

 (sjcj) xj  ui bi LB


(5)

                    j                         i
Coefficients for this paired constraint can be positive, negative or zero. To be able to use constraint (5) to fix variables in both bounds, all coefficients must be positive or zero. We substitute yj=1– xj in the negative coefficients (sjcj) to get positive ones (sjcj)’and add the equivalent value in the right hand side. The resultant constraint is, 

 (sjcj)xj   (sjcj)’yj  ui bi  (sjcj)’LB 
(6)

      jsj(0          j sj<0                  ij sj<0        
An interesting property of (6) is that the positive coefficient values are the negative reduced costs for the variables in the LP solution and the negative values correspond to the negative dual values of their bounds in the LP solution. Besides, the value of  ui bi  s’j is

      ij sj<0
the optimal solution of the LP problem (UB), and the right hand side of this paired constraint becomes the difference between the upper bound that corresponds to the LP solution and the lower bound that corresponds to the best known solution for the problem (UB–LB). The resultant constraint is used to fix variables to zero or one,

 (sjcj) xj   (sjcj)’ yj  UB LB 
(7)

             jsj(0            j sj<0        
If coefficients (sjcj) of xj are greater to the difference (UB-LB), those variables must be zero in the integer solution; if the coefficients (sjcj)’ of yj are greater to the same difference, those variables must be one in the integer solution because its complement, yj must be zero. Variables whose coefficients are smaller than the difference remain in the problem.

Because we depend on the gap UBLB and UB can not be changed because it is the LP continuous relaxed solution of the problem, a better LB given by the best integer solution known, can increase the number of integer variables fixed.

4. Example

To illustrate the procedure described, let us consider the following example with 10 variables and 1 constraint:

Maximize

 40x1+49x2+24x3+36x4+40x5+30x6+32x7+16x8+27x9+9x10
Subject To

5x1+7x2+4x3+6x4+8x5+6x6+8x7+4x8+9x9+3x10 ( 33

xj{0,1},  



j=1,…,10

After solving the relaxed LP problem, the corresponding dual values for the constraint and the bounds xj1, are uj={5,15,14,4,6,0,0,0,0,0,0}. Reduced costs for the variables are {0,0,0,0,0,0,-8,-4,-18,-6}. This problem has a continuous LP solution value of 204 (UB), and a known integer solution of 198 (LB). In Table 1, we show the coefficient values for the surrogate constraint (sj), defined in (4), the objective function (cj), defined in (1) and the resulting paired constraint (sj – cj), defined in (5). In order to explain the properties found in the paired constraint, we also show the xj solution values for the continuous LP relaxation and for the integer problems.


x1
x2
x3
x4
x5
x6
x7
x8
x9
x10



sj
25
35
20
30
40
30
40
20
45
15

165

sj-cj
-15
-14
-4
-6
0
0
8
4
18
6

-33

xj
1
1
1
1
0.6
1
0
0
0
1

LP

xj
1
1
1
1
1
0
0
0
0
1

MIP

Table 1 Surrogate and Paired Constraint
The surrogate constraint with all positive coefficients and variables xj and yj is,

15y1+14y2+4y3+6y4+0x5+0x6+8x7+4x8+18x9+6x10 ( 6

From this constraint, we can deduct that y1, y2, x7 and x9 must be zero to fill the constraint. It means, x1= x2= 1 and x7= x9=0 in the integer (MIP) problem.

5. Computational Results

We tested our approach in two experiments. For the first experiment we used small real-world problems already published in the literature and available in the OR-Library. For the second, we used the set of 270 large problems developed by Chu and Beasley [3] and also available in the OR-library. In this research, we used the solutions reported by Osorio et al [32] as lower bounds  (LB). We solved all the problems on a Pentium III, 1066 MHz and 248 MB RAM Memory, using the general purpose software for optimization, CPLEX V7.5.

1.1 Results for small problems

The first experiment for testing the influence of these cuts was made in small real-world problems consisting of m = 2 to 30 and n = 6 to 105 and their optimal solutions are known. Many of these problems have been used in studies by other authors (Aboudi and Jörnsten [1], Dammeyer and Voss [5], Drexl [11], Glover and Kochenberger [16], Hoff, Lokketangen, and Mittet [23], Khuri, Back, and Heitkötter [29], Lookketangen and Glover [30], Lokketangenin, Jornsten and Storoy [31], Thiel and Voss [36], and Chu and Beasley [3]).

The first four columns indicate the problem set name, the number of problems in the set, the average number of variables and the average number of constraints in each set. Columns 5 and 6 show the average number of variables fixed to zero and one, using our procedure, for each set. Column 7 shows the total percentage of variables fixed with the procedure proposed in this paper.

OR-Library
No.
  Average

Fixed Vars to

% Vars.

File
Problems
Rows
Vars.
0
1
Fixed

BEASLEY
7
8.6
24.0
4.1
5.4
46.2

SENTO
2
16.0
44.0
11.0
13.0
62.9

WEING
6
2.0
28.0
8.8
6.5
54.8


2
2.0
105.0
34.0
48.5
78.6

WEISH
5
5.0
30.0
13.2
8.6
72.7


4
5.0
40.0
16.5
14.3
76.9


4
5.0
50.0
24.5
11.0
71.0


4
5.0
60.0
25.5
22.8
80.4


4
5.0
70.0
30.0
25.5
79.3


4
5.0
80.0
37.0
28.3
81.6


5
5.0
90.0
46.6
33.6
89.1

PB
7
13.3
31.2
1.0
0.0
2.5

Table 2 Results for Small Problems

1.2 Results for Large Problems in OR-Library
For the second experiment, we used the set with 270 large MKP instances used by Chu and Beasley [3] and made publicly available in the OR-library, with WWW access at http://mscmga.ms.ic.ac.uk/. They solved these problems on a Silicon Graphics Indigo workstation (R4000, 100 MHz, 48 MB main memory) and CPLEX solver version 4.0. Their GA heuristic was run once for each of the problems an each run terminated when 106 non-duplicate children had been generated. 

This data set was generated using the procedure suggested by Fréville and Plateau [10]. The number of constraints m was set to 5, 10 and 30, and the number of variables n was set to 100, 250 and 500. Thirty problems were generated for each m-n combination, giving a total of 270 problems.

The aij are integer numbers drawn from the discrete uniform generator U(0,1000). For each m-n combination, the right-hand side coefficients (bi’s) are set using the relation, bi  = j  aij, where  is a tightness ratio and =0.25 for the first ten problems, =0.50 for the next ten problems and =0.75 for the remaining ten problems. The objective function coefficients (cj’s) were correlated to aij and generated as follows: cj =   iM  aij/m + 500 dj   jN, here dj is a real number drawn form the continuous uniform generator U(0,1). In general, correlated problems are more difficult to solve than uncorrelated problems (Gavish and Pirkul [11], Pirkul [33]). Results for these problems are shown in Table 3.

n
m


Data
Best
Fixed Vars.

%Fix

Con.
Vars

m/n
Corr
Obj
0
1
Vars

5
100
0.25
20
0.28
24197
22.6
2.1
24.7

5
100
0.50
20
0.301
43253
11
15.9
26.9

5
100
0.75
20
0.296
60471
0.6
36.4
37

5
250
0.25
50
0.309
60411
108
22.6
52.16

5
250
0.50
50
0.302
109287
54.9
68.6
49.4

5
250
0.75
50
0.299
151556
7.3
131
55.28

5
500
0.25
100
0.2920
120627
259
73.1
66.46

5
500
0.50
100
0.295
219512
149
176
64.96

5
500
0.75
100
0.306
302362
41.4
311
70.48

10
100
0.25
10
0.178
22602
6.3
0
6.3

10
100
0.50
10
0.167
42661
0.4
1.6
2

10
100
0.75
10
0.171
59556
0
15.6
15.6

10
250
0.25
25
0.16
59021
47.4
0.9
19.32

10
250
0.50
25
0.157
108729
12.4
11.3
9.48

10
250
0.75
25
0.16
151344
0.7
76.4
30.84

10
500
0.25
50
0.166
118600
129
3
26.44

10
500
0.50
50
0.177
217301
42.5
57.5
20

10
500
0.75
50
0.167
302576
0.7
170
34.22

30
100
0.25
3.33
0.065
21660
0
0
0

30
100
0.50
3.33
0.065
41440
0
0
0

30
100
0.75
3.33
0.066
59202
0
0.3
0.3

30
250
0.25
8.33
0.06
56915
0
0
0

30
250
0.50
8.33
0.068
106583
0
0
0

30
250
0.75
8.33
0.065
150479
0
3.1
1.24

30
500
0.25
16.67
0.06
115550
0.1
0
0.02

30
500
0.50
16.67
0.064
216208
0.1
0
0.02

30
500
0.75
16.67
0.065
302386
0
0.9
0.18

Table 3 Results for Large Problems

The first four columns in Table 3 indicate the sizes (n and m) the tightness ratio () of a particular problem structure, and the ratio m/n, with each problem structure containing 10 problem instances.  Column 4 shows the average of the best integer solutions found for those instances. The next two columns report the average number of variables fixed to zero and to one in each particular combination of m and n. Finally, column 9 shows the average percentage of integer variables fixed for each particular structure.

5. Conclusions
Our procedure is a very easy way to fix binary variables to their bounds in MKP instances. It can be seen as an effective preprocessing that reduces the binary number of variables to be fixed in a searching tree. The procedure is simple and utilizes surrogate analysis and results obtained from the solution of the LP relaxed problem. The results obtained shows that a big percentage of variables can be fixed in a short amount of time for many different instances.
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