
Annals of Operations Research 117, 71–93, 2002
 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Cutting and Surrogate Constraint Analysis for
Improved Multidimensional Knapsack Solutions

MARÍA A. OSORIO aosorio@cs.buap.mx
School of Computer Sciences, Autonomous University of Puebla, Puebla 72560, México

FRED GLOVER
Hearin Center for Enterprise Science, School of Business, University of Mississippi, MS 38677, USA

PETER HAMMER
Rutgers Center for Operations Research, Rutgers University, Piscataway, NJ 08854-8003, USA

Abstract. We use surrogate analysis and constraint pairing in multidimensional knapsack problems to fix
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to be one, in an optimal integer solution. Using an initial feasible integer solution, we generate logic cuts
based on our analysis before solving the problem with branch and bound. Computational testing, including
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1. Introduction

In this paper, we present an integrated cutting and surrogate constraint analysis strategy
for the NP-hard, multidimensional knapsack problem (MKP), which can be formulated
as:

Maximize z =
∑
j∈N

cjxj (1)

subject to
∑
j∈N

aij xi � bi, i ∈ M, (2)

xj ∈ {0, 1}, j ∈ N, (3)

where N = {1, 2, . . . , n), M = {1, 2, . . . , m}, cj � 0, for all j ∈ N , aij � 0, for all
i ∈ M, j ∈ N . Each of the m constraints of (2) is called a knapsack constraint.

The multidimensional knapsack problem has received wide attention from the op-
erations research community, because it embraces many practical problems. Applica-
tions include resource allocation in distributed systems, capital budgeting and cutting
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stock problems [16,18,52]. In addition, the MKP can be seen as a general model for any
kind of binary problems with positive coefficients (see [35,38]).

Most of the research on knapsack problems deals with the much simpler single
constraint version (m = 1). For the single constraint case the problem is not strongly
NP-hard and effective approximation algorithms have been developed for obtaining near-
optimal solutions. A good review of the single knapsack problem and its associated
exact and heuristic algorithms is given by [44]. Important recent advances are found in
[43,48].

The development of exact algorithms for the MKP began several decades ago [2,9,
19]. There exists a main stream of algorithms that try to find upper or lower bounds for
the objective value, to reduce the problem size and use information from its relaxations,
and to employ search trees in branch and bound schemes. The algorithm presented in
this paper belongs in this mainstream.

The Constraint Pairing ideas used here were developed by Hammer, Padberg and
Peled [27] and used later by Dembo and Hammer [10], as a support of a reduction al-
gorithm for knapsack problems that uses constraint pairing in a Lagrangian relaxation
framework. Glover established the main principles of his surrogate constraint duality
theory in the same year [22], stimulating a series of algorithmic developments that
used surrogate constraint analysis as an alternative to relying on weaker relaxations pro-
vided by Lagrangian relaxation theory. Recently, Glover, Sherali and Lee [24] generated
cuts from surrogate constraint analysis for zero–one and multiple choice programming.
Those cuts proved to be effective and stronger than a variety of those previously intro-
duced in the literature.

Other kinds of exact algorithms include a dynamic programming based method
[18], an enumerative algorithm based on the Fourier–Motzkin elimination [5], and an
iterative scheme using linear programs to generate subproblems solved with implicit
enumeration [53].

One of the first algorithms that used branch and bound to solve the MKP was
published by Shih [52]. He obtained an upper bound for the problem by computing the
objective function value associated with an optimal fractional solution obtained related
to every single constraint knapsack problem separately. He found an upper bound for the
MKP using the minimum of the objective values for these separate problems and tested
his algorithm for random instances with sizes up to five knapsacks and ninety variables.
He obtained better results than the zero–one additive algorithm developed by Balas [2].

Gavish and Pirkul [16] developed another branch and bound algorithm using the
Lagrangian, the surrogate and the composite relaxation of the problem. They evaluated
the quality of the bounds generated by these different relaxations. They also developed
new algorithms for obtaining surrogate bounds and for reducing the size of the problem.
For randomly generated instances containing up to 5 constraints and 200 variables, their
algorithm was proved to be faster than the Shih algorithm by at least one order of magni-
tude. Their algorithm was also found to be faster than the Sciconic commercial software
and was used as a heuristic, terminating before the tree search was finished. In this way,
it achieved better results than the heuristic developed by Loulou and Michaelides [42].
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Crama and Mazzola [7] showed that although the bounds derived from the well-
known relaxations, such as Lagrangian, surrogate, or composite, are stronger than the
bounds obtained from the linear programming (LP) relaxation, the improvement ob-
tained with these relaxations is limited. In particular, they showed that the improvement
in the quality of the bounds using any of these relaxations cannot exceed the magnitude
of the largest coefficient in the objective function.

The first statistical analysis for this problem was conducted by Fontanari [13], who
investigated the dependence of the objective function on the knapsack capacities and
on the number of capacity constraints, in the case when all objects were assigned the
same profit value and the knapsack coefficients were uniformly distributed over the unit
interval. He obtained a rigorous upper bound on the optimal profit by employing an-
nealed approximation and compared the results with the exact value obtained through a
Lagrangian relaxation method.

An asymptotic analysis was presented by Schilling [50] who computed the asymp-
totic (n – with m fixed) objective function value for problems where the objective and
knapsack coefficients were uniformly (and independently) distributed over the unit inter-
val and where the RHS in the knapsack was set to the value 1. Szkatula [54] generalized
that analysis to the case where the RHS in the constraints were not restricted to be one
(see also Szkatula [55]).

Finally, heuristic algorithms developed for the MKP can be roughly grouped into
the early heuristic approaches, bound based heuristics (which make use of an upper
bound on the optimal solution to the MKP), tabu search heuristics, genetic algorithm
heuristics, and analyzed heuristics (with some theory relating to worst-case or proba-
bilistic performance). Hanafi and Fréville [28] developed an efficient tabu search ap-
proach for the 0–1 multidimensional knapsack problem. Chu and Beasley [6] presented
an extensive analysis of the problem, using a genetic algorithm and testing it in a data
set with 270 problems, now in the OR-library, that included instances with 5, 10 and
30 knapsacks, 100, 250 and 500 variables and an RHS generated as 0.25, 0.5 and 0.75 of
the coefficient sums in every knapsack. We used this data set in one of our computational
experiments.

2. Some results on surrogate constraint duality

Duality theory in mathematical programming is not new. For years, it has customarily
been based upon the use of a generalized Lagrangian function to define the dual. El-
egant results have emerged linking optimality conditions for the dual to those for the
primal. Out of these results have arisen solution strategies for the primal that exploit
the properties of the primal dual interrelations. Some of these strategies have been re-
markably successful, particularly for problems in which the duality gap – the amount by
which optimal objective function values for the two problems differ – is nonexistent or
small. A different type of solution strategy has been proposed for solving mathematical
programs in which duality gaps are likely to be large.
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In contrast to the Lagrangian strategy, which absorbs a set of constraints into the
objective function, a different strategy proposed by Glover [22] replaces the original
constraints by a new one called a surrogate constraint. Since their introduction by
Glover [21], surrogate constraints have been proposed by a variety of authors for use
in solving nonconvex problems, especially those of integer programming. Surrogate
constraints that were ‘strongest’ for 0–1 integer programming under certain relaxed as-
sumptions were suggested by Balas [3] and Geoffrion [17]. The paper by Geoffrion
also contained a computational study that demonstrated the practical usefulness of such
proposals. Later, Dyer [12] provided a major treatment of surrogate duality. Methods
for generating strongest surrogate constraints according to other definitions, in particular,
segregating side conditions and introducing normalizations, were subsequently proposed
by Glover [20]. However, a significant price was paid by the relaxations used in some
of these early developments, whose effect was to replace the original nonconvex surro-
gate IP problem by a linear programming problem. The structure of this LP problem is
sufficiently simple that the distinction between the surrogate constraint approach and the
Lagrangian approach vanished.

The first proposal for surrogate constraints [21] used notions that were later used
in surrogate duality theory. It defined a strongest surrogate the same way as in this
theory and presented a theorem that led to a procedure for searching optimal surrogate
multipliers that could obtain stronger surrogate constraints for a variety of problems.
Later, Greenberg and Pierskalla [26] provided the first major treatment of surrogate con-
straints in the context of general mathematical programming. These authors showed
that the dual surrogate is quasiconcave, thus assuring that any local maximum for it is a
global maximum, and noted that the surrogate approach has a smaller duality gap than
the Lagrangian approach. They provided sufficient conditions for the nonoccurrence of
surrogate duality gaps.

The work of Glover [22] developed a surrogate duality theory that provides exact
conditions under which surrogate duality gaps cannot occur. These conditions (both nec-
essary and sufficient) are less confining that those governing the absence of Lagrangian
duality gaps. Furthermore, they give a precise characterization of the difference between
surrogate and Lagrangian relaxation, and give a framework for combining these relax-
ations. Useful relationships for combining these relaxations are also developed in [36].

2.1. Definitions

The primal problem of mathematical programming can be written:

P: min
x∈X

f (x)

subject to g(x) � 0,

where f and each component gi(x) of the vector g(x) are real-valued functions defined
on X. No special characteristics of these functions or of X will be assumed unless
otherwise specified.
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A surrogate constraint for P is a linear combination of the component constraints
of g(x) � 0 that associates a multiplier ui with each gi(x) to produce the inequality
ug(x) � 0, where u = (u1, . . . , um). Clearly, this inequality is implied by g(x) � 0
whenever u � 0. Correspondingly, we define the surrogate problem as:

SP(u): min
x∈X

f (x)

subject to ug(x) � 0.

The optimal objective function value for SP(u) will be denoted by s(u), or more pre-
cisely, as:

s(u) = inf
x∈X(u)

f (x), where X(u) = {
x ∈ X: ug(x) � 0

}
.

Since SP(u) is a relaxation of P (for u nonnegative), s(u) cannot exceed the optimal
objective function value for P and approaches this value more closely as ug(x) � 0.
Choices for the vector u that improve the proximity of SP(u) to P – i.e., that provide
the greatest values of s(u) – yield strongest surrogate constraints in a natural sense, and
motivate the definition of the surrogate dual:

SD: max
u�0

s(u).

The surrogate dual may be compared with the Lagrangian dual LD: maxu�0 L(u), where
L(u) is the function given by L(u) = infx∈X{f (x) + ug(x)}. It should be noted that
s(u) is defined relative to the set X(u), which is more restrictive than the set X rela-
tive to which the Lagrangian L(u) is defined. Also, modifying the definition of L(u)
by replacing X with X(u), while possibly increasing L(u), will nevertheless result in
L(u) � s(u) because of the restriction ug(x) � 0; that is, L(u) may be regarded as an
‘underestimating’ function for both the surrogate and primal problems.

Another immediate observation is that any optimal solution to the surrogate prob-
lem that is feasible for the primal is automatically optimal for the primal and no com-
plementary slackness conditions are required, in contrast to the case for the Lagrangian.
These notions have been embodied in the applications of surrogate constraints since
they were first proposed. Taken together, they provide what may be called a ‘first duality
theorem’ for surrogate mathematical programming.

2.2. First duality theorem for surrogate mathematical programming

Optimality conditions for surrogate duality are the requirements that the surrogate mul-
tiplier vector u is non-negative, x is optimal for the surrogate problem, and x is feasible
for the primal problem. ‘Strong’ optimality conditions add the requirement of comple-
mentary slackness ug(x) = 0. The surrogate optimality conditions are:

(i) u � 0,

(ii) x is optimal for SP(u),

(iii) g(x) � 0.



76 OSORIO ET AL.

Theorem [22]. The surrogate optimality conditions imply x is optimal for the primal,
u is optimal for the surrogate dual, and their optimal objective function values are
equal.

Using the basic equalities, we can also go a step farther and define the strong
optimality conditions of complementary slackness:

(iv) ug(x) = 0.

The strong surrogate optimality conditions are necessary and sufficient for optimality,
and they can be used in a variety of new inferences for surrogate constraints in math-
ematical programming. The methodology proposed here draws on these fundamental
results.

3. Constraint pairing

The main ideas about constraint pairing in integer programming were exposed by Ham-
mer, Padberg and Peled [27]. Based on the objective of getting bounds for most vari-
ables, the strategy is to pair constraints in the original problem to produce bounds for
some variables.

It is well known that a major parameter in characterizing the computational com-
plexity of an integer programming problem is the number n of integer valued variables.
This is the reason why most algorithms involve as a first step an attempt to fix values
or at least find sharp bounds on the integer variables of the problem. However, in most
cases this attempt is performed on individual constraints examined one at time. It is ap-
parent on the other hand that the examination of the full constraint system will usually
lead to much better conclusions. The computational effort required by such an approach,
however, can be excessive. To strike a compromise between the two extremes – examin-
ing the full constraint system on one hand, and examining individual constraints on the
other – one is naturally led to the idea of examining pairs of constraints.

Obviously, the selection of the ‘pair’ to be examined will play an important role
in this procedure. Based on the results exposed in the last section, the dual surrogate
constraint provides a useful relaxation of the constraint set, and can be paired with the
objective function. In order to get the dual surrogate values, we will use the bounds
xj � 1 as part of the LP relaxation of the problem. The resulting surrogate will have the
following properties:

∑
j∈N

(
νj +

∑
i∈M

uiaij

)
xj �

∑
i∈M

uibi +
∑
j∈N

νj . (4)

For the resulting surrogate,
∑

i∈M uibi + ∑
j∈N νj = continuous LP relaxed solution,

our current upper bound (UB).
Another interesting property of (4) is that the coefficient values for the x’s whose

relaxed values in the LP problem are strictly greater than zero, will be the same as in the
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objective function, i.e.:

∑
j∈N

(
νj +

∑
i∈M

uiaij

)
= cj . (5)

Now, we pair the system, ∑
j∈N

cjxj � LB, (6)

∑
j∈N

(
νj +

∑
i∈M

uiaij

)
xj � UB. (7)

Using the property in (5) for eliminating all terms whose x values in the relaxed LP
solution are strictly greater than zero, we get a new constraint with fewer variables in the
left side and with a right-hand side equal to the gap, UB − LB.

Defining S as a set that contains the indexes of x variables whose values in the
relaxed LP solution are equal to zero, and making {νj + ∑

i∈M uiaij } = sj , the resulting
combined constraint can be expressed as∑

j∈N
(sj − cj )xj � UB − LB. (8)

A straightforward way to use this constraint is to strengthen the bounds on the compo-
nents of x. Obviously, if a sj−cj is greater than the value UB−LB, the corresponding xj
must be zero in the integer solution. Because we depend on the gap UB−LB and UB can-
not be changed because it is the LP-continuous relaxed solution of the problem, a better
LB given by the best integer solution known, can increase the number of integer vari-
ables fixed to zero. The inequality (8) will not only be used to fix x variables to zero,
but also will be used as a knapsack with positive coefficients to get effective logic cuts,
as we describe in the following section.

4. Logic and nested cuts

A logic cut for an MIP model has been characterized as an implication of the constraint
set. Actually any logical formula implied by the constraint set as a whole is a logic cut,
and a logic cut is true if it satisfies the constraints even if it is not implied by the con-
straints. Logic cuts can be defined in an even more general sense that allows them to
be nonvalid. A cut may be added to the problem without changing the optimal solution,
but it may exclude feasible solutions (see [31]). An intuitive understanding of a prob-
lem can suggest logic cuts, both valid and nonvalid, even when no further polyhedral
cuts are easily identified. The idea of a (possibly nonvalid) logic cut was defined by
Hooker et al. [34], who used process synthesis as an example. Other examples include
structural design problems in [4], and a series of standard 0–1 problems discussed by
Wilson [58].
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Whereas a cut in the traditional sense is an inequality, a logic cut can take the
form of any restriction on the possible values of the integer variables, whether or not
expressed as an inequality. Logic cuts can therefore be used to prune a search tree even
when they are not expressed as inequality constraints in an MIP model. But they can
also be imposed as inequalities within an MIP model, in which case they can tighten the
linear relaxation and cut off fractional solutions as traditional cuts do.

Knapsack constraints are often used to generate logic cuts, in the form of extended
inequalities, which can be easily manipulated. The logical clauses implied by a knapsack
constraint are identical to the well-known “covering inequalities” for the constraint, and
their derivation is straightforward (see [25]). Examples with logic cuts generated from
knapsack constraints include location problems in [46], and multilevel generalized as-
signment problems in [45].

The MIP solver in CPLEX provides effective and efficient uses of cover inequal-
ities to facilitate the solution of MIP problems. The cover inequalities are derived by
looking at each all-binary inequality with non-unit coefficients. For a constraint with all
non-negative coefficients, a minimal cover is a subset of the variables in the inequality
such that if all variables were set to 1, the inequality would be violated, but if any one
variable were excluded, the inequality would be satisfied. Cover inequalities take the
form where the sum of the variables in the cover must not exceed the size of the cover
less one. If a cover inequality is violated by the solution to the current subproblem, it is
added to the problem.

While it is hard to derive all the extended inequalities implied by a knapsack con-
straint, it is easy to derive all contiguous cuts. Consider a 0–1 inequality dy � δ for
which it is assumed, without loss of generality, that d1 � d2 � · · · � dn > 0. Note that
if dj < 0, its sign is reversed and dj is added to δ. A contiguous cut for dy � δ has the
form,

t+w+k−1∑
j=t

yj � k, (9)

where k is the degree of the cut and w < n is the “weakness” (with w = 0 indicating a
cut that fixes all of its variables). In particular (9) is a t-cut because the first term is yt
and it is valid if and only if

t+k−1∑
j=1

dj +
n∑

t+w+k
dj < δ. (10)

Furthermore, Hooker and Osorio [33] showed that every t-cut of weakness w for dy � δ

is implied by a 1-cut of weakness w. Therefore, generating 1-cuts can be equivalent to
generate all t-cuts in terms of infering values for the binary variables. Figure l shows the
algorithm that generates the 1-cuts we used for this problem. These cuts are generated
in linear time. To illustrate, consider the knapsack constraint

13y1 + 9y2 + 8y3 + 6y4 + 5y5 + 3y6 � 30.
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Let k = 1, s = ∑n
j=1 dj , klast = 0.

For j = 1, . . . , n:
{Let s = s − dj .
If (s < δ) then

{While (s + dk < δ)
{Let s = s + dk
Let k = k + 1

}
If (k > klast) then

{Generate the cuty y1 + · · · + yj � k.
Let klast = k

}
}

}

Figure 1. An algorithm for generating all 1-cuts for a knapsack constraint dy � δ in which d1 � d2 �
· · · � dn > 0.

This knapsack constraint gives rise to the following cuts,

y1 + y2 � 1,

y1 + y2 + y3 � 2,

y1 + y2 + y3 + y4 + y5 � 3.

Note that the first cut becomes redundant, once the second one is formulated.
The preceding cut inequalities are a special case of nested inequalities, where two

inequalities overlap in their unit coefficients only if the nonzero coefficients of one are
contained in the other. Algorithms for efficiently generating strongest nested inequali-
ties in general, simultaneously bounded from above as well as below, are presented for
surrogate constraints having both positive and negative coefficients in Glover [21]. We
restrict attention here to the simpler types of nested inequalities where each is strictly
“contained in” the next member of the progression.

4.1. Nested logic cuts from pairing

For our procedure, we do not generate the nested cuts directly from the knapsack con-
straint system in (2), because these cuts are too numerous and the number of nonzero
coefficients in every cut is so large that the cut is not very useful in the optimization
procedure. Instead, we generate the cuts using the modified paired constraint defined
in (8) and the objective function used as a constraint in (6).

The inequality (8) has information from the dual surrogate constraint and from the
objective equation. It also has fewer variables with nonzero coefficients than a customary
logic cut, because we set xj = 0 for all sj values greater than the value of UB − LB. In
addition, sj = 0 for all variables xj whose values in the LP relaxed problem are strictly
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greater than zero. Now, we have only one knapsack, with a reduced number of variables,
to generate cuts.

We will split the variables in (6), sending to the right-hand side the terms whose
x’s are presented in the last cut generated from (8). Now, using the worst case, we get
the following inequality,

∑
j∈N ′

cjxj � LB − max

(∑
j∈N ′′

cjxj

)
,

where N ′′ is a set that contains the indexes of the variables present in the last cut gener-
ated from (6) and N ′ is a set with the indexes not present in that cut. The cuts generated
from (8) impose a limit on the value of max(

∑
j∈N ′′ cjxj ). We take that limit and make

z′ = LB − max(
∑

j∈N ′′ cjxj ), to yield
∑
j∈N ′

cjxj � z′. (11)

Now, we use (11) for generating nested logic cuts of type “greater equal”. Again, the
inequality in (11) has fewer variables than the original in (6). The cuts generated from
this knapsack will likewise have fewer variables and will be more effective.

To test the effectiveness of these cuts in our experiments we use the number of
nodes in the search tree because there is no reasonable theory of “tightness” for cutting
planes (other than to check whether a cut is supporting or facet defining). Usually,
the measure of the effectiveness of covering cuts and logic cuts can be obtained by
comparing the size of the search tree (number of nodes) with and without the cuts. The
search tree size is relatively an intrinsic measure [33].

5. Example

We illustrate the procedure in the following example. Table 1 shows the coefficients
for a multidimensional knapsack problem with 15 variables and 4 knapsack constraints.
Referring to the formulation presented in (1)–(3), the cj are the objective function coef-
ficients and the aij are the knapsack coefficients.

After solving the relaxed LP problem, the corresponding dual variable values are:

ui = {0.66, 0.52, 0.62, 2.79, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 23.13, 22.44, 0, 0}.
This problem has a continuous LP solution value of 335.6 (UB), and we already know
an integer feasible solution with a value of 301 (LB). In table 2, we show the coefficient
values for the surrogate constraint sj , defined in (7), the objective function cj , defined
in (6), and the resulting paired constraint sj − cj , defined in (8). In order to explain the
properties found in the paired constraint, we also show the xj values for the continuous
LP relaxation and for the integer problems.

A useful property of the paired constraint, is the fact that a zero coefficient results
for any xj whose value in the relaxed LP problem is strictly greater than zero. In con-
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Table 1
Data for the multidimensional knapsack example.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cj 36 83 59 71 43 67 23 52 93 25 67 89 60 47 64 RHS
a1j 7 19 30 22 30 44 11 21 35 14 29 18 3 36 42 87
a2j 3 5 7 35 24 31 25 37 35 25 40 21 7 17 22 75
a3j 20 33 17 45 12 21 20 2 7 17 21 11 11 9 21 65
a4j 15 17 9 11 5 5 12 21 17 10 5 13 9 7 13 55

Table 2
Surrogate and paired constraints.

j 1 2 3 4 5 6 7 8 9

sj 60.4 83 59 91.5 53.7 72.1 66.2 92.9 93
cj 36 83 59 71 43 67 23 52 93
sj − cj 24.4 0 0 20.5 10.7 5.1 43.2 40.9 0
xj 0 0.72 0.49 0 0 0 0 0 0.9
xj 0 0 1 0 0 0 0 0 1

j 10 11 12 13 14 15 RHS

sj 60.7 67 89 60 57.6 88.4 335.6 UB
cj 25 67 89 60 47 64 301 LB
sj − cj 35.7 0 0 0 10.6 24.4 34.6 UB − LB
xj 0 0.22 1 1 0 0 Cont. LP solution
xj 0 0 1 1 0 0 Integer solution

sequence, the paired constraint will contain nonzero coefficients only for variables that
are zero in the continuous LP relaxed problem and most of these variables will tend to
be zero in the integer solution.

The paired constraint, as defined in (8), is

24.4x1+20.5x4+10.7x5+5.1x6+43.2x7+40.9x8+35.7x10+10.6x14+24.4x15 � 34.6.

In order to be able to satisfy this paired constraint, variables x7, x8 and x10 must be
zero because their coefficients are greater than the right-hand side value of 34.6 in this
inequality. Fixing those x variables to zero and sorting the constraint coefficients in
descending order, we have

x7 = 0, x8 = 0, x10 = 0, and

24.4x1 + 24.4x15 + 20.5x4 + 10.7x5 + 10.6x14 + 5.1x6 � 34.6.

Applying the procedure described in figure 1, we get the following nested not redundant
logic cuts:

x1 + x15 + x4 � 1,

x1 + x15 + x4 + x5 + x14 � 2.
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Now, from the objective function constraint (6), we have

36x1 + 83x2 + 59x3 + 71x4 + 43x5 + 67x6 + 23x7 + 52x8 + 93x9 + 25x10 + 67x11

+ 89x12 + 60x13 + 47x14 + 64x15 � 301.

Clearing terms and sending to the right-hand side the variables included in the
preceding logic cut, we obtain

83x2 + 59x3 + 67x6 + 23x7 + 52x8 + 93x9 + 25x10 + 67x11 + 89x12 + 60x13

� 301 − {36x1 + 71x4 + 43x5 + 47x14 + 64x15}.
In the worst case, with the coefficients sorted in descending order and eliminating the
terms with a x value of zero, we have

93x9 + 89x12 + 83x2 + 67x11 + 67x6 + 60x13 + 59x3

� 301 − Max{71x4 + 64x15 + 47x14 + 43x5 + 36x1}.
Using x1 + x15 + x4 + x5 + x14 � 2, this implies 93x9 + 89x12 + 83x2 + 67x11 + 67x6 +
60x13 + 59x3 � 166.

This last inequality, mostly contains variables not included in the paired constraint,
i.e., variables that will tend to equal 1 in the integer solution. Applying the procedure
shown in figure 1, we get the following no redundant logic cut,

x9 + x12 + x2 + x11 + x6 + x13 � 2.

This last cut is of the “greater equal” type in contrast to the cuts obtained from
the paired constraint, and contains variables not included in the other logic cuts. The
addition of these two types of cuts to the original problem proves to be a powerful tool
to improve the CPU time required to solve MKPs to optimality using a classical branch
and bound procedure.

We do not have any way to know the quality of an integer feasible solution in
advance. Yet the cuts obtained from the paired constraint and from the objective function
strongly depend in the integer feasible solution used to generate them. Such a solution
may be obtained from a data set or from another paper in the topic. Another source is to
apply a heuristic procedure or to run a commercial code for a fixed number of nodes and
to take the best solution generated.

6. Experimental results

We tested our approach in three experiments. To test the number of variables fixed
by pairing the dual surrogate with the objective function, we used the set of 270 large
problems developed by Chu and Beasley [6] and available in the OR-library. In order
to test the efficiency of the logic cuts generated, we present two experiments. For the
first one, we used real-world problems already published in the literature and available
in the OR-library, and for the second one, we combined different ideas published in the
literature to build our own generator of hard MKPs.
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6.1. Large problems in OR-library and number of variables fixed

For this experiment, we used the set with 270 large MKP instances used by Chu
and Beasley [6] and made publicly available in the OR-library, with WWW access at
http://mscmga.ms ic.ac.uk/.

This data set was generated using the procedure suggested by Fréville and
Plateau [15]. The number of constraints m was set to 5, 10 and 30, and the number
of variables n was set to 100, 250 and 500. Thirty problems were generated for each
m− n combination, giving a total of 270 problems.

The aij are integer numbers drawn from the discrete uniform generator U(0, 1000).
For each m − n combination, the right-hand side coefficients (bi’s) are set using the
relation, bi = α

∑
j∈N aij , where α is a tightness ratio and α = 0.25 for the first ten

problems, α = 0.50 for the next ten problems and α = 0.75 for the remaining ten
problems. The objective function coefficients (cj ’s) were correlated to aij and generated
as follows: cj = ∑

i∈M aij /m+ 500dj j ∈ N , here dj is a real number drawn form the
continuous uniform generator U(0, 1). In general, correlated problems are more difficult
to solve than uncorrelated problems [16,47].

We used these instances to test the number of variables fixed with our procedure,
pairing the surrogate obtained with the dual values and the objective function. Table 3
shows the value for the ratio m/n, the average number of variables fixed and cuts added
for every combination of m, n and α. It also shows the correlation between the coef-
ficients in the objective function and the coefficients in the knapsacks for every subset.
There is a very high correlation coefficient between the ratio m/n and the number of
variables fixed for every α in this data set. We also found high correlation coefficients
between the number of variables (m) and the average number of cuts generated for every
m and n combination. There is a high negative correlation coefficient between the num-
ber of knapsacks in the problems (n) and the average correlation coefficient in the data
for each m and n, and between the number of cuts generated and the tightness value in
the knapsacks (α).

We solved these problems using CPLEX V6.5.2 installed on Windows NT in a
Pentium III with 450 MHz and 64 MB RAM, without modifying its default parameters,
both with and without the addition of our procedure. We allowed a maximum solu-
tion time of 3 hours (10,800 secs) and a memory tree size of 250 MB. We compared
the objective value obtained, the number of problems solved to optimality with a gap
of 0.0001 and the number of problems finished when the time or the tree size memory
were exceeded in both methodologies. We also compared the gap value between the
best solution value found and the continuous LP relaxation value for the best node re-
maining in the tree, i.e., (best LP value of remaining nodes − best integer value)/(1.0 +
best LP value of remaining nodes), getting averages values every 10 instances with the
same m, n and α.

The first three columns in table 4 indicate the sizes (n andm) and the tightness ratio
(α) of a particular problem structure, with each problem structure containing 10 prob-
lem instances. The next three columns report the average objective value obtained with
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each methodology, the genetic algorithm procedure proposed by Chu and Beasley [6],
CPLEX with our fixed variables and cuts and CPLEX by itself. In column 7 we present
the difference in the average objective value between CPLEX with our cuts and CPLEX
alone. Columns 8 and 9 present the average gap value at the moment CPLEX stopped
the execution for both methodologies. The next 6 columns show the number of instances
finished in each possible way: proved optimality with a gap less or equal to 0.0001, time
finished or tree size memory finished.

The average objective value for the genetic algorithm is 120,153.1, for CPLEX,
120,162.5 and for our procedure, 120,167.2. We have a total improvement of 125.2
in the sum of objective values and an average improvement of 4.637 over the average
CPLEX values. The improvement in the gap values is also significant, with 0.0012 for
our methodology and 0.00126 for CPLEX. The gap value is the most accurate way to
know how close the solution found will be to the real optimal value of the problem. In
addition, our procedure was able to solve 100 problems to optimality, while CPLEX
alone could solve only 95. It is interesting to notice that in the rest of the problems,
CPLEX usually terminated because the tree size memory was exceeded. Our procedure
kept the tree size memory within the limits for a larger number of instances and finished
because the time limit was reached.

6.2. Real problems in OR-library

The second experiment for testing the influence of these cuts was made in real-world
problems consisting of m = 2 to 30 and n = 6 to 105 included in the OR-library and
whose optimal solutions are known. Many of these problems have been used by other
authors [1,6,8,11,23,30,37,40,41,56].

We solved these problems on a SUN Ultrix 10, Solaris 7 and 250 MB RAM, using
the general-purpose CPLEX 7.1 mixed integer programming (MIP) solver, including the
options for adding cuts and fixing variables (Cuts + Fix). The first five columns indicate
the problem set name, the authors who first published them, the number of problems in
the set, the average number of variables and the average number of constraints in each
set. Columns 6 and 7 show the average number of cuts generated and variables fixed to
zero, using our procedure, for each set.

All problems from the test set were solved to optimality in less than 3 seconds of
CPU time and the difference by CPLEX in order to solve these simple problems with and
without our procedure was practically nil. Instead, the effect of the cuts for these problem
instances can be better appreciated by considering the average number of nodes needed
to solve each set. The relative difference in the number of nodes needed by CPLEX was
on average 41.31%, favoring the version that was augmented by our method.

6.3. Problem generation and results for difficult problems

Problem generation methodologies are currently a very important topic of research.
A main part of applying new techniques consists of empirically testing algorithm per-
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Table 5
Computational results for small problems.

File First published in No. Average Average Av. Vars. Average nodes
problems variables constraints cuts fixed Cuts + Fix Original

Petersen Petersen (Balas) [3] 7 24 8.57 5.7 3 7.29 15
SENTO Senju and Toyoda [51] 2 60 30 8.5 7 273.5 308.5
WEING Weingartner and Ness [57] 7 47.25 2 6.3 15 3.5 6.375
WEISH Shi [52] 30 60 5 6.1 28 10 12.47
PB Fréville and Plateau [14] 6 31.17 13.33 6.2 1 153.67 185.17
HP Fréville and Plateau [14] 2 31.5 4 6.5 0 27 27.5

formance across a representative range of problems. An inadequate set of test problems
can provide misleading information about algorithm performance.

MKP problem generation has been intensively studied in the last decade. Using
the gap as a measure of hardness, Pirkul [47] concludes that for a given number of
constraints and a given degree of difficulty, the gap reduces as the number of variables
increases. For a given number of variables and a given degree of difficulty, the gap
increases as the number of constraints increases. Finally, holding the number of vari-
ables and constraints constant, the gap increases as the degree of difficulty increases (in
particular, as the constraints become tighter).

Fréville and Plateau [15] suggested a procedure for generating hard MKP prob-
lems. This procedure was adopted by Chu and Beasley [6] in the generation of the MKP
dataset in the OR-library used for the second experiment in this paper. The approach al-
gorithm uses independently uniform random generation with an interval of (0,1000) for
the coefficients in the knapsacks. It also averages the constraint coefficients of each vari-
able to generate the coefficient in the objective function, getting, in this way, a positive
correlation between the constraint coefficients and the objective. This way of generating
the knapsacks provides independence and a wide range in the coefficients, characteris-
tics that contribute to the hardness of these problems (see [49]). The positive correlation
between the objective and the knapsack coefficients, even if highly influenced by the
number of knapsacks in the problem, contributes to the problems hardness (see table 5
and [29]).

Hill and Reilly [29] presented an empirical study of the effects of coefficient cor-
relation structure and constraint slackness settings on the performance of solution pro-
cedures. This work examined synthetic two-dimensional knapsack problems (2KP), and
conducted tests on representative branch-and-bound and heuristic procedures. Popu-
lation correlation structure, and in particular the interconstraint component of the cor-
relation structure, was found to be a significant factor influencing the performance of
algorithms. In addition, the interaction between constraint slackness and population
correlation structure was found to influence solution procedure performance and inde-
pendent sampling seems to provide information closer to median performance. These
results agree with prior studies. Tighter constraints and constraint coefficients with a
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wider range of values yield harder problems, especially when both of these elements are
combined in a problem.

In a different setting, Laguna et al. [39] developed a procedure to create hard prob-
lem instances for MGAP (Multilevel Generalized Assignment Problems). This approach
embodies a random problem generator, labeled E, that draws constraint coefficients from
an exponential distribution and generates the coefficients in the objective function to be
inversely correlated. The effectiveness of this approach for generating difficult problems
led us to consider adapting some of its features to the MKP setting.

Combining all the ideas described above for generating hard problems, we devel-
oped a generator that produces challenging MKP problems. Our approach uses indepen-
dently exponential distributions over a wide range to generate the constraint coefficients,
and the corresponding average for each variable is used to calculate directly correlated
coefficients in the objective function. The RHS values are set to 0.25 of the sum of the
corresponding constraint coefficients for the first part of the experiment, using the con-
cept that tighter constraints yield difficult problems [29,47]. In the second part of the
experiment, this multiple was set at 0.25, 0.5 and 0.75.

The problem generator we used to create the random instances of MKPs is de-
signed as follows. The aij are integer numbers drawn from the exponential distribution
aij = 1.0 − 1000 ln(U(0, 1)), i ∈ M, j ∈ N . Again, for each m − n combination, the
right-hand side coefficients are set using the relation, bi = α

∑
j∈N aij , i ∈ M, where

α is a tightness ratio and α = 0.5 for the first part of the experiment. In the second part,
α = 0.25 for the first ten problems, α = 0.5 for the next ten problems and α = 0.75 for
the remaining ten problems. The objective function coefficients (cj ’s) were correlated to
aij and generated as: cj = 10(

∑
i∈M aij /m) + 10U(0, 1), j ∈ N . In all cases, U(0, 1)

is a real number drawn form the continuous uniform generator.
The first part of the last experiment was performed on a SUN Ultrix 10, Solaris 7

and 250 MB RAM, using CPLEX V7.1. We use the number of nodes used by CPLEX
as a measure of hardness for the instances generated in this way. The average number of
nodes, in 10 instances, needed to solve a problem with 100 variables, 5 constraints and a
tightness of 0.25 for the OR-library problems is 36,434.2. For a problem with the same
characteristics using our generator, the average number of nodes is 1,366,447.

For this experiment we chose problems consisting of 100 variables, 5 constraints
and α = 0.25. These settings generate problems that can usually be solved to optimality

Table 6
Results for problems with 100 variables, 5 constraints and a tightness of 0.25.

Corr. Best Objective No. Var. Cuts + fixed CPLEX
coeff. cuts fix Nodes Sol’n time Nodes Sol’n time

Average 0.448163 2432 2514.2 21 0.3 1211665 875.547 1366447 767.82
Std.desv. 0.032846 109.5 107.02 4 1.6 559327.8 399.46 612223.9 345.41
Maximum 0.498274 2634 2728 28 9 2992562 2027.98 2685657 1483.83
Minimum 0.376742 2243 2323 10 0 363727 262.56 247035 139.54
Sum 72973 75425 64 9 36349947 26266.41 40993405 23034.5
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in less than three hours. We generated 30 problems and allowed each one to run without
a limit on solution time. In table 6, we show the average number of nodes and the
solution time needed by CPLEX with and without our procedure.

The average number of nodes generated by our procedure reduces the average re-
quired by CPLEX by 154,782 (from 1,366,447 to 1,211,665) even though our approach
was only implemented at a single node of the tree (corresponding to the first LP solu-
tion). More significantly, the reduction is not only in the average number of nodes, but
in fact occurred for every setting tested. These instances were solved in CPLEX 6.5.2
and CPLEX 7.1. The CPU time changed considerably, but the difference in the number
of nodes remained stable in favor of our procedure.

For the second part of the experiment, we used a Pentium III with 500 MHz and
128 MB in RAM. We concentrated in problems with 5 constraints and 100, 250 and 500
variables, and examined tightness values of 0.25, 0.5 and 0.75. These problems were
solved using CPLEX V6.5.2 for Windows 98, without modifying its default parameters,
both with and without the addition of our procedure. We allowed a maximum solution
time of 3 hours (10,800 secs) and a memory tree size of 250 MB. We compared the
objective value obtained, the number of problems solved to optimality with a gap of
0.0001 and the number of problems finished when the time or the tree size memory were
exceeded in both methodologies. We also compared the gap values in both options.

The results are shown in table 7. The first two columns indicate the number of vari-
ables (n) and the tightness ratio (α) of a particular problem structure, with each problem
structure containing 10 problem instances. Columns 3 and 4 present the number of vari-
ables fixed and the number of cuts generated with our procedure. Column 5 shows the
average correlation coefficient between the objective function and the constraint coeffi-
cients for each setting. In columns 6 and 7 we present the average objective value for
CPLEX with our cuts and for CPLEX alone. Column 8 presents the absolute difference
between columns 6 and 7. Columns 9 and 10 show the average gap value at the moment
CPLEX stopped the execution for both methodologies. The next 6 columns show the
number of instances finished in each possible way: proved optimality with a gap less or
equal to 0.0001, the time elapsed or the tree size memory used upon termination.

In all the settings tested, CPLEX performed much better on average when aug-
mented with our procedure. As the table discloses, the use of the nested cuts allowed
CPLEX to solve problems to optimality that could not otherwise be solved by using
search trees of reasonable sizes.

7. Conclusions

Our procedure augments a branch and cut framework, by a process of fixing variables
and adding global cuts. The approach can be applied every time the branch and cut
method gets a better integer solution or it can be used as a preprocessing algorithm
(as we have done), based on assuming a bound on an optimal objective value. Our
computational experiments show that the preprocessing approach creates an enhanced
method that allows problems to be solved by constructing smaller search trees.
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