
Mixed Logical/Linear Programming �

J. N. Hooker

Graduate School of Industrial Administration

Carnegie Mellon University, Pittsburgh, PA 15213 USA

M. A. Osorio

School of Computer Science

University of Puebla, Puebla, M�exico 72550

Revised June 1997

Abstract

Mixed logical/linear programming (MLLP) is an extension of mixed integer/linear pro-
gramming (MILP). It can represents the discrete elements of a problem with logical propo-
sitions and provides a more natural modeling framework than MILP. It can also have
computational advantages, partly because it eliminates integer variables when they serve
no purpose, provides alternatives to the traditional continuous relaxation, and applies logic
processing algorithms. This paper surveys previous work and attempts to organize ideas
associated with MLLP, some old and some new, into a coherent framework. It articu-
lates potential advantages of MLLP's wider choice of modeling and solution options and
illustrates some of them with computational experiments.

1 Introduction

Mixed logical/linear programming (MLLP) is a general approach to formulating and solving
optimization problems that have both discrete and continuous elements. It extends mixed in-
teger/linear programming (MILP) by introducing logic-based modeling and solution options.
MLLP in no way rejects integer programming and in fact incorporates all of its techniques.
Its expanded modeling framework may, however, allow more natural or succinct formulations
without sacri�cing solution e�ciency. Its larger repertory of solution techniques may accel-
erate solution or even solve problems that are intractable for MILP alone. These techniques
include branching strategies, relaxations and logic processing algorithms that are not ordinarily
associated with integer programming.

Mixed discrete/continuous problems are traditionally conceived as continuous problems in
which some of the variables are restricted to be integers. MLLP permits one to take a di�erent
view. Rather than embed the discrete aspects of the problem within a linear programming
model, which may not be the most natural approach, one can represent them with logical
formulas. MLLP therefore has the option of dispensing with integer variables. Rather than

�This research is partially supported by the U.S. O�ce of Naval Research Grant N00014-95-1-0517 and by
the Engineering Design Research Center at Carnegie Mellon University, an Engineering Research Center of the
National Science Foundation (USA), under grant EEC-8943164.

1

require that a feasible solution satisfy a �xed set of inequalities, an MLLP model can contain
several alternative sets of inequalities. The logical formulas govern which sets must be satis�ed
by a feasible solution.

1.1 General Form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical descrip-
tion. An MLLP model has the form

min cx
s.t. pj(y; h)! (Ajx � aj); j 2 J qi(y; h); i 2 I:

(1)

The constraint set has a logical part (on the right-hand side of the bar) and a continuous part
(on the left).

The logical part consists of formulas qi(y; h) that involve atomic propositions y = (y1; : : : ; yn),
which are either true or false. Such a formula might be q1(y; h) = y1 _ y2, which says that y1
or y2 (or both) must be true. There may also be some variables h = (h1; : : : ; hm) that take
several discrete values. Thus qi(y; h) could be (y1 _ y2) ^ (h1 6= h2), where ^ means `and.' In
general the formulas pj and qi may take any form that is convenient for the purpose at hand,
provided that their truth value is a function of the truth values of the propositions y and the
values of the discrete variables h.

The continuous part associates logical formulas pj(y; h) with systems Ajx � aj of linear
inequalities. A system Ajx � aj is enforced when pj(y; h) is true. So the constraints of the
following problem in e�ect require x to satisfy A1x � a1 or A2x � a2 (or both).

min cx
s.t. y1 ! (A1x � a1) y1 _ y2

y2 ! (A2x � a2)

In general, (x; y; h) is feasible if (y; h) makes all the logical formulas qi(y; h) true, and x satis�es
the linear systems corresponding to the formulas pj(y; h) that (y; h) makes true.

1.2 Solution of an MLLP

The problem (1) can be solved by branching on the truth values of the yj's and the discrete
values of the hj 's. At each node of the search tree, one solves a linear programming problem
(LP) containing the constraints that correspond to true pj's, plus any inequalities added to
strengthen the relaxation. A key element of MLLP is to apply a logical inference algorithm
to the logical formulas before solving the LP. This may generate valid constraints (constraints
satis�ed by all feasible solutions) in logical form, and in particular it may �x some additional
yj's and hj 's.

An MLLP can therefore be solved in a manner that is analogous to the traditional branch-
and-cut algorithms used in MILP. There are two primary di�erences, however. First, as one
descends into the tree, the LP's solved at the nodes are not necessarily de�ned by �xing
certain variables in them. They may also be de�ned by adding new constraints corresponding
to formulas that �xed variables make true, or by some combination of the two methods.

A second di�erence is that at each node of the search tree, the logical part of the constraint
set can be processed with its own set of algorithms, in order to generate additional constraints

2

or check for feasibility. These include many of the logic programming and constraint satis-
faction techniques that appear in the computer science and arti�cial intelligence literatures
(discussed below). MLLP therefore provides one means of uniting mathematical programming
with methods have been developed more or less independently in other �elds.

1.3 Motivation for MLLP

The primary rationale for MLLP is that it brings to mathematical programming greater mod-
eling power and a wider range of solution options. But MLLP also grows out of a rethinking
of the role of integer variables.

Traditionally integer variables have in most cases served a modeling function and a relax-
ation function simultaneously. It is proposed here that these functions be separated. When
integer variables provide the most natural modeling device for certain constraints, e.g. knap-
sack constraints, they should be used to formulate those constraints. When a certain portion
of the constraint set has a useful continuous relaxation when formulated with integer variables,
they should be included in that portion of the problem in order to obtain the relaxation.

In other cases, however, inequalities may not provide the most convenient way to formulate
the discrete aspect of the problem. Also their continuous relaxation may be weak, or its
e�ect may be duplicated by adding a few valid inequalities that involve only the original
continuous variables. Furthermore, it will be seen that integer variables may have fractional
values in the continuous relaxation even when a feasible solution of the original problem has
been found. Thus if one branches on integer variables with fractional values, branching may
continue unnecessarily.

In such cases, integer modeling may not justify the overhead it incurs. The inclusion
of integer variables enlarges the linear programming problems that must be solved at nodes
of the search tree. This can be particularly costly when there are many discrete variables,
because it may be possible to process the discrete elements of the constraint set much more
rapidly in logical form. A simple constraint propagation algorithm, for example, may have
the same ability to detect infeasibility in logical constraints as solving the linear relaxation of
their inequality formulation. But its speed may be two or three orders of magnitude greater,
because it need not carry along the data structures and machinery of a linear solver. Other
types of logic processing may obtain valid constraints or �x variables in ways that are not
available in MILP.

The primary drawback of MLLP is that it requires more expertise on the part of the user.
It provides more options but presupposes that the user knows how to choose the best one.
In particular, if integer variables are not used, then the traditional continuous relaxation is
unavailable, and it may be necessary to concoct an alternate relaxation.

1.4 Aim of this Paper

The aim here is to explore MLLP as a general and practical approach to solving problems
with both discrete and continuous elements. Previous work is drawn together, and an attempt
is made to order ideas associated with MLLP, some old and some new, in a coherent frame-
work. The potential advantages of an expanded repertory of modeling and solution options
are articulated, and several are illustrated by computational experiments. The logic processing
component of MLLP is explored only deeply enough to convey the avor of the ideas, but some
expository literature is cited.

3

Because MLLP is a general approach to continuous/discrete problem solving, a thorough-
going experimental evaluation would be a massive undertaking, and it is not attempted here.
The task would be further complicated, both practically and conceptually, by the fact that
MLLP is not a single approach to problem solving but a framework within which several ap-
proaches can be used. As in MILP, its e�ectiveness depends on how carefully one designs
relaxations and branching schemes to �t the problem at hand. The intent here is to provide a
broader range of options and to show by example that at least some of them can be superior
to the conventional ones.

The examples include chemical engineering network synthesis problems, warehouse location
problems, ow shop scheduling problems, and the \progressive party problem," which is a
scheduling problem posed by a yacht party. The last problem is rather frivolous but has
attracted a good deal of attention and illustrates several ideas associated with MLLP.

Experience with engineering design problems (e.g., [11, 68]) suggests that MLLP can be
usefully extended to mixed logical/nonlinear programming (MLNLP). This possibility is not
pursued here.

1.5 Previous Work

A logic-based approach to operations research was discussed as early as 1968 in Hammer and
Rudeanu's treatise on boolean methods [26]. Granot and Hammer [24] suggested in 1971 the
possibility of using boolean methods for integer programming.

The MLLP approach described here was perhaps �rst clearly articulated by Jeroslow [43,
44], who was primarily interested in issues of representability. He viewed discrete variables as
arti�ces for representing a feasible subset of continuous space, which in the case of an MLLP or
MILP model is a union of �nitely many polyhedra. From this it follows that MLLP and MILP
models are essentially disjunctive programming models. Building on joint work with Lowe [45],
Jeroslow proved that an MILP model can represent a union of �nitely many polyhedra if and
only if they have the same recession cone.

In the meantime, Williams [70, 71, 72, 74], Blair [9, 10] and Hooker [29, 29, 30, 31, 32]
explored connections between logic and optimization. Beaumont [7] undertook what is appar-
ently the �rst systematic study of MLLP as a solution technique for optimization problems.
Drawing on the seminal work of Balas in disjunctive programming [2, 3, 4], he described families
of valid inequalities that can be used to create relaxations of disjunctive constraints.

More recently, Hooker argued in [33] that a logic-based approach to optimization, includ-
ing MLLP, can exploit problem structure in ways that are parallel to traditional polyhedral
techniques. Wilson [75, 76, 77] studied logic-based formulations.

It is crucial to demonstrate the practical value of MLLP in a problem domain. This was
accomplished largely by Grossmann in the area of chemical process design in a series of papers
coauthored with Hooker, Turkay, Yan and particularly Raman [39, 53, 54, 55, 56, 68]. These
papers developed some of the key MLLP concepts discussed here. Bollapragada, Ghattas and
Hooker also obtained encouraging results in structural design [11].

1.6 Other Approaches

It is instructive to contrast MLLP with other approaches that combine discrete and continuous
elements.

4

The mixed logical/linear programming approach of McAloon and Tretko� [47, 48], which
is implemented in the system 2LP, combines procedural with declarative programming. The
discrete element is represented by a user-supplied script that controls the formulation and
solution of LP models that represent the continuous element. This contrasts with the approach
to MLLP described here, in which both elements are modeled in a declarative fashion. The
two approaches are not incompatible, however, and 2LP could in fact provide a framework in
which to implement the MLLP techniques presented here.

Even pure 0-1 optimization problems have a continuous element in the sense that the
constraints are represented by linear inequalities, and it is not obvious how to apply logic-
based methods to them. An approach devised by Barth [6] is to derive formulas from the
inequalities that can be processed with logical inference methods. Barth's techniques can
enhance the logical processing phase of MLLP algorithms.

The work of McAloon, Tretko� and Barth is inuenced by several streams of research that
have historically focused on discrete problems but are experimenting with ways to incorporate
continuous variables. Logic programming models, introduced by Colmerauer [17] and Kowalski
[46], allow one to formulate a problem in a subset of �rst-order logic (Horn clause logic). Recent
versions of the logic programming language PROLOG [12, 65], such as PROLOG III [18] (and
soon IV), incorporate linear programming.

The integration of constraint solving with logic programming is formalized in the constraint
logic programming (CLP) scheme of Ja�ar and Lassez [41]. It generalizes the \uni�cation" step
of logical inference methods to encompass constraint solving in general [42].

CLP provides a framework for integrating constraint satisfaction methods developed in the
arti�cial intelligence community (and elsewhere) with logic programming ideas [21, 67, 69].
A number of systems along this line have been developed in addition to Prolog III, including
CLP(R) [41], CAL [1], CHIP [20, 63], the ILOG solver [50], and other packages [13, 61, 57].
Linear programming has a place in several of these systems. Unlike MLLP, these methods
rely to some extent on procedural modeling. They also lack MLLP's emphasis on exploiting
problem structure in the generation of valid constraints and relaxations, although the constraint
programming literature has shown some interest in exploiting structure (e.g., [22]).

1.7 Outline of the Paper

The remainder of the paper begins with a few simple modeling examples (Section 2). Two
long sections (3 and 4) respectively discuss relaxations and logic processing algorithms. Sec-
tion 5 provides a generic algorithm for solving MLLP's, and Section 6 presents models and
computational results for four sets of problems. The concluding section attempts to assemble
guidelines for modeling and solving problems in an MLLP framework.

Aside from its survey and development of MLLP generally, the speci�c contributions of
this paper include necessary and su�cient conditions for whether an elementary inequality
for a disjunction is supporting (Section 3.4), necessary and su�cient conditions for integrality
of a 0-1 disjunctive representation (Section 3.5), a de�nition of optimal separating inequali-
ties (Section 3.7), a completeness proof for multivalent resolution (Section 4.1), and a unit
resolution algorithm for multivalent clauses (Section 4.2).

5

2 Modeling Examples

A few simple examples will illustrate modeling in MLLP.

2.1 Fixed Charges and Semicontinuous Variables

A cost function with a �xed charge is generally given a big-M formulation in integer program-
ming,

min cx+ dy
s.t. x �My

x � 0
y 2 f0; 1g;

where c is the variable cost and d the �xed cost. (Other constraints and objective function
coe�cients would normally be present.) An MLLP model is,

min cx+ z
s.t. y ! (z = d) y _ y0

y0 ! (x = 0)
x; z � 0:

The proposition y _ y0 states that either the �xed cost is incurred or it is not. The model can
also be written by replacing y0 with :y (not-y) and deleting y _ y0.

A semicontinuous variable x is one whose value must lie in one of the intervals [at; bt] for
t = 0; : : : ; T . One MILP representation is,

atyt � x � btyt; t = 0; : : : ; T
TX
t=0

yt � 1

yt 2 f0; 1g; t = 0; : : : ; T

(2)

An MLLP representation is

yt ! (at � x � bt)
T_
t=0

yt

2.2 Quadratic Assignment Problem

The quadratic assignment problem is typically formulated as an MILP model in the following
way.

min
X
ikjl

vijck`wijk`

s.t.
X
i

yik = 1; all kX
k

yik = 1; all i

zijk` � yik + yj` � 1; all i; j; k; `
yik; wijk` 2 f0; 1g; all i; j; k; `:

6

Here vij is the volume of tra�c between facilities i and j, and ck` is the unit cost of tra�c
between locations k and `. yik = 1 if facility i is assigned to location k, and zijk` = 1 if facilities
i; j are respectively assigned to locations k; `.

An MLLP model can be written with fewer variables.

min
X
ij

zij

s.t. (yik ^ yj`)! (zij = vijck`); all i; j; k; `
X
i

yik = 1; all k

zij � 0; all i; j:
X
k

yik = 1; all i

(3)

The constraints on the right are intended to be read as logical constraints. The �rst constraint,
for example, says that exactly one of the propositions y1k; : : : ; ynk is true, for each k. The
symbol ^ on the left means `and.'

An alternate model uses multivalued discrete variables hi to indicate which location is
assigned to facility i.

min
X
ij

zij

s.t. (hi = k ^ hj = `)! (zij = vijck`); all i; j; k; ` alldi�(h1; : : : ; hn)
zij � 0; all i; j hi 2 f1; : : : ; ng; all i:

The \alldi�" constraint on the right states that h1; : : : ; hn must all take distinct values. All-
di�erent constraints are widely used in constraint programming.

3 Relaxations

The linear programming problem solved at each node of an MLLP search tree provides a lower
bound on the optimal value at that node. However, the LP contains only those constraints that
are enforced by true propositions. Many logical constraints may therefore be unrepresented in
the LP relaxation, which may therefore provide a weak bound. When possible it is important
to augment the relaxation with additional valid inequalities that represent logical formulas.

This section presents some techniques for obtaining linear relaxations of logical formulas
by generating valid inequalities in the continuous variables. We will consider only disjunctive
formulas in which each disjunct is an atomic proposition that enforces a linear system:

yj ! (Ajx � aj) y1 _ : : : _ ym: (4)

An important research question is how relaxations may be written for broader classes of formu-
las, particularly formulas that contain multivalued discrete variables hj . This matter is being
investigated.

Some of the valid inequalities that will be presented for disjunctions mimic the e�ect of the
traditional continuous relaxation of a 0-1 model. The strength and nature of the traditional
relaxation is remarkably ill understood, given the degree to which it is used. An analysis of it
will therefore comprise an important part of the discussion.

7

x1
10

x2

10

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1: Convex hull of the feasible set of a scheduling disjunction.

3.1 The Convex Hull

The task at hand is to generate valid inequalities for (4), which can be written_
t2T

Atx � at: (5)

The feasible set is a union of jT j polyhedra, and a description of the convex hull of this union
is the best possible linear relaxation of the formula.

In some cases the convex hull is so large that even the best possible relaxation is poor or
useless. If for example x is bounded 0 � x � m, it is not uncommon for the convex hull of (5)
to �ll most or all of the box described by 0 � x � m. A notorious example of this arises in
scheduling problems. If operations 1 and 2 begin at times x1 and x2 and last 2 minutes, one
imposes the disjunctive constraint

(x2 � x1 + 2) _ (x1 � x2 + 2)

to ensure that one occurs after the other. The upper bounds m represent the latest time
at which an operation could be scheduled and therefore may be much larger than 2. The
dashed line in Fig. 1 encloses the convex hull when m = (10; 10). In this case the best possible
relaxation is given by x1 + x2 � 2, x1 + x2 � 18 and 0 � xj � 10. This is not much di�erent
than 0 � xj � 10 and is probably useless in practice.

3.2 Disjunctive and Dual Inequalities

A relaxation of (5) can be obtained by generating valid inequalities that partially or completely
describe the convex hull. Balas [4] characterized valid inequalities for (5) as follows. First, note
that bx � � is a valid inequality for a feasible disjunct Atx � at if and only if it is dominated
by a nonnegative linear combination (or surrogate) of Atx � at. A dominating surrogate can
be written uAx � ua, where b � uA, � � ua and u � 0. But bx � � is a valid inequality for

8

the disjunction as a whole if it is valid for each disjunct; i.e., for each disjunct a surrogate can
be found that dominates bx � �.

Theorem 1 (Balas) The inequality bx � � is valid for (5) if any only if for each feasible

system Atx � at there is a ut � 0 such that b � utAt and � � utat.

Given any set of surrogates utAtx � utat, if x � 0 one can immediately write the valid
disjunctive inequality �

max
t2T

futAtg

�
x � min

t2T
futatg (6)

for (5), where the maximum is componentwise. Theorem 1 clearly implies that if x � 0, every
valid inequality is dominated by a disjunctive inequality (6). The strength and usefulness
of a disjunctive inequality (6) depends radically on the choice of surrogates. One could in
principle generate disjunctive inequalities to de�ne every facet of the convex hull, but this is
often impractical. The task of obtaining a good relaxation for (5) is in essence the task of
choosing multipliers ut judiciously.

One initially attractive choice for ut is given by the solution of a dual problem. Each
surrogate should ideally give the best possible bound on the objective function cx. That is,
ut should be chosen so that the minimum value of cx subject to utAtx � utat is maximized.
The desired ut is easily seen to be the optimal solution of the LP dual of minfcx j Atx � atg,
where ut is the vector of dual variables. (To put it di�erently, the surrogate dual for linear
programming is identical to the LP dual [23].)

The di�culty with this approach is that because Atx � at is only a small part of the original
constraint set, it may have no coupling with the objective function. That is, the variables xj
that have nonzero coe�cients in cx may have zero coe�cients in Atx � at, and vice-versa.
This means that cx provides no information to guide the choice of ut, a situation that is in
fact common in practice.

A possible remedy is to include more constraints in the problem whose dual is solved, so
as to capture the link between cx and Atx � at. This can be done as follows. At any node
of the search tree a system Ax � a of certain linear constraints are enforced by true formulas
pi(y; h). If Ax � a is included in each term of the disjunction (5), it becomes

_
t2T

Atx � at

Ax � a

!

For each t one solves the dual of

min cx
s.t. Atx � at (ut)

Ax � a (u)
(7)

where (ut; u) are the dual variables as shown. An optimal solution of the dual supplies a
reasonable set of multipliers ut for the disjunctive inequality (6).

Unfortunately this approach appears to be impractical, because (7) is generally a large LP.
Computational results reported in Section 6.2 suggest that it is very time consuming to solve
the dual of (7) for each disjunct. The remaining discussion will therefore focus on much faster
mechanisms for choosing e�ective multipliers ut.

9

3.3 Elementary Inequalities

The most common sort of disjunctive constraint (5) is one in which each disjunct is a single
inequality, _

t2T

atx � �t: (8)

where it is assumed that 0 � x � m. Beaumont [7] showed how to generate a valid inequality
for (8) that is equivalent to the continuous relaxation of the traditional 0-1 formulation of (8).
The latter is

atx � �t �Mt(1� yt); t 2 TX
t2T

yt = 1

0 � x � m
yt 2 f0; 1g; t 2 T:

(9)

Each Mt is chosen so that �t �Mt is a lower bound on the value of atx:

�t �Mt =
X
j

minf0; atjgmj: (10)

The bounds 0 � x � m are imposed to ensure that such a lower bound exists. It can be
assumed without loss of generality that Mt > 0, because otherwise the inequality is vacuous
and can be dropped. Beaumont obtains a valid inequality by taking a linear combination of
the inequalities in (9), where each inequality t receives weight 1=Mt. This yields an elementary

inequality for (8), X
t2T

at

Mt

!
x �

X
t2T

�t
Mt

� jT j+ 1: (11)

Theorem 2 (Beaumont) The elementary inequality (11) is equivalent to the continuos re-

laxation of (9). That is, the feasible set of (11) and 0 � x � m is equal to the projection of

the feasible set of the continuous relaxation of (9) onto the x-space.

One can also prove equivalence by applying Fourier elimination to (9) in order to eliminate y.
It is easy to show that (11) and 0 � x � m are the resulting inequalities.

A similar technique obtains elementary inequalities for all logical formulas that are express-
ible as knapsack constraints,

dy � �
yt ! (atx � �t); t 2 T
0 � x � m;

(12)

where d � 0. The 0-1 representation of (12) is

atx � �t �Mt(1� yt); t 2 T
0 � x � m
dy � �
yt 2 f0; 1g; t 2 T:

(13)

A linear combination of the inequalities, using weights dt=Mt, yields the elementary inequality, X
t2T

at
dt
Mt

!
x �

X
t2T

�t
dt
Mt

�
X
t2T

dt + �: (14)

10

x1

x2

HHHHHHHHHHHHHHHHHHH

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

(a)

(b)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

Figure 2: Illustration of a supporting elementary inequality (a) and a nonsupporting elementary
inequality (b).

This is in general weaker than the continuous relaxation of (13), however. If
P

t dt = �, for
example, (13) forces all the disjuncts to hold, where (14) only forces a linear combination of
them to hold.

In many cases a better lower bound than that in (10) can be obtained for atx, resulting in
a stronger inequality. One method is to minimize atx subject to each of the other disjuncts
and 0 � x � m and pick the smallest of the minimum values. Mt is therefore chosen so that

�t �Mt = min
t0 6=t

n
min
x
fatx j at

0

x � �t0 ; 0 � x � mg
o
: (15)

The computation involved is negligible.
Consider for example the following constraint set, whose feasible set is the shaded area in

Fig. 2.
(x1 + 2x2 � 2) _ (3x1 + x2 � 3)
0 � xj � 2:

The 0-1 formulation is
x1 + 2x2 � 2�M1(1� y1)
3x1 + x2 � 3�M2(1� y2)
y1 + y2 = 1
0 � xj � 2; yj 2 f0; 1g

Beaumont puts (M1;M2) = (2; 3) which results in the valid inequality 3
2x1 +

4
3x2 � 1. By

contrast, (15) puts (M1;M2) = (1; 2), which yields the stronger inequality x1 + x2 � 1. This
is a supporting inequality in the sense that it de�nes a supporting hyperplane for the feasible
set.

Even when (15) is used to compute Mt, the resulting inequality may fail to be supporting.
Consider the constraints (Fig. 3),

(�x1 + 2x2 � 2) _ (2x1 � x2 � 2)
0 � xj � 2:

11

x1

x2

��
��

��
��

��
��

��
��

��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(b)

(a)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

Figure 3: Illustration of an elementary inequality (a) and a strengthened elementary inequality
(b).

(15) sets (M1;M2) = (4; 4), which results in the useless inequality x1 + x2 � 0. The inequality
can obviously be strengthened to x1 + x2 � 1.

When the inequalities atx � �t in (12) are replaced by systems of inequalities Atx � at,
many elementary inequalities are required to achieve the e�ect of the traditional relaxation.
Let each system Atx � at consist of inequalities Atix � ati for i 2 It. The 0-1 formulation is

Atx � at �M t(1� yt); t 2 T
0 � x � m
dy � �
yt 2 f0; 1g; t 2 T:

(16)

Here M t is an array such that for each i 2 It, a
t
i �M t

i is a lower bound on Atix. Repeated
applications of Fourier elimination reveal that the projection of the feasible set of (16) onto
the x-space is described by the set of inequalities of the form, X

t2T

Atit
dt
M t

it

!
x �

X
t2T

atit
dt
M t

it

�
X
t2T

dt + �;

for all possible vectors (i1; : : : ; ijT j) 2 I1 � : : :� IjT j.
Elementary inequalities may therefore be impractical when the yt's correspond to systems

of inequalities. In such cases one can use optimal separating inequalities (described below) or
the traditional relaxation.

3.4 Supporting Elementary Inequalities

The example of Fig. 3 shows that an elementary inequality can fail to be supporting. In such
cases it is a simple matter to increase its right-hand side until it supports the feasible set, thus
obtaining a strengthened elementary inequality. In fact there is a closed-form formula for the

12

x1

x2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(a)

(b)

J
J
J
J
J
J
J
J
J
J
J
J
J

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Figure 4: A supporting elementary inequality (a) and a facet-de�ning inequality (b).

best possible right-hand side. The formula allows one to check easily whether a given elemen-
tary inequality is supporting, and when it is not, to improve upon the traditional continuous
relaxation the inequality represents.

Figures 2 and 3 may suggest that a disjunction a1x � �1_a
2x � �2 produces a supporting

elementary inequality if and only if the vectors a1; a2 subtend an acute angle, and that a similar
relationship might be discovered for more than two disjuncts. A third example reveals that
the situation is more complicated than this. Figure 4 shows the feasible set for

(�3x1 + x2 � �3) _ (�x2 � �1)
0 � xj � 3

The elementary inequality (a) is 3x1 +2x2 � 12, which is supporting even though (�3; 1) and
(0;�1) subtend an obtuse angle.

A more adequate analysis goes as follows. Let bx � � be any valid inequality for the
disjunction (8), such as an elementary inequality, such that the inequality de�nes a supporting
hyperplane of the feasible set of (8). Then � is the smallest of the minimum values obtained
by minimizing bx subject to each of the disjuncts atx � �t. That is,

� = min
t2T

�t; (17)

where
�t = min

n
bx j atx � �t; 0 � x � m

o
:

The computation of �t is simpli�ed if b � 0, because in this case the upper bounds x � m can
be ignored. To this end one can introduce the change of variable,

x̂j =

(
xj if bj � 0
mj � xj otherwise

13

The strengthened elementary inequality in terms of x̂, namely b̂x̂ � �̂, can now be computed,
where b̂j = jbjj. The right-hand side of bx � � can then be recovered from (17) by setting

�t = �̂t +
X
j

bj < 0

mjbj: (18)

It remains to compute

�̂t = min
n
b̂x j âtx̂ � �̂; x̂ � 0

o
; (19)

where

âtj =

(
atj if btj � 0

�atj otherwise
(20)

and
�̂t = �t �

X
j

bj < 0

mja
t
j: (21)

Because b̂ � 0, LP duality applied to (19) yields that

�̂t = min
j

âtj > 0

(
b̂j
âtj

)
maxf�̂t; 0g: (22)

This proves,

Theorem 3 A valid inequality bx � �0 for the disjunction (8) is supporting if and only if

�0 = �, where � is de�ned by (17), (18) and (22).

3.5 Integral 0-1 Representations

The traditional continuous relaxation of a disjunctive constraint may permit fractional solu-
tions even when the original disjunction is satis�ed. This means that a traditional branch-
and-bound method can keep branching even when a feasible solution has been discovered. It is
therefore best to check disjunctions (as well as other logical constraints) directly for feasibility,
as done in MLLP.

The 0-1 formulation of the disjunction (5) is the following.

Atx � at �Mt(1� yt); t 2 T
0 � x � mX
t2T

yt = 1

yt 2 f0; 1g; t 2 T;

(23)

where Mt satis�es,

at �Mt � min
n
Atx j 0 � x � m

o
; (24)

and e = (1; : : : ; 1). The claim is that when x is �xed to some value �x, an extreme point solution
y = �y of (23) can be nonintegral even when �x satis�es (5). An example of this is presented by
a simple semicontinuous variable, x 2 f0g [[s1; s2], or

(�x � 0) _ (x � s1)
0 � x � s2:

14

x

y

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

�xs1 s2

�
(�x; �y)

Figure 5: The line segment from (�x; 0) to (�x; �y) is the polytope described by the continuous

relaxation of the 0-1 representation of a semicontinuous variable. (�x; �y) is a fractional extreme

point of the polytope even though �x is a feasible value.

The continuous relaxation of (23) is

�x � �s2(1� y)
x � s1 � s1y
0 � x � s2
0 � y � 1:

(25)

If x is �xed to �x and (25) is projected onto y, the result is

1�
�x

s1
� y � 1�

�x

s2
; 0 � y � 1: (26)

If s1 � �x � s2, �y = 1 � �x
s2

is an extreme point solution of (26) and therefore (25), and it is
nonintegral whenever s1 < �x < s2. So (25) can have extreme point solutions with fractional
y even when �x 2 [s1; s2], and even though (25) is the best possible (convex hull) relaxation of
(23). The extreme point solutions for �x 2 [s1; s2] are guaranteed to have integral y only when
s1 = s2; i.e., when x is essentially a rescaled binary variable.

The idea can be de�ned in general as follows. Let P�x be the set of points y that satisfy the
continuous relaxation of (23) when x is �xed to �x. Let the continuous relaxation of (23) be
integral if for every (�x; �y) satisfying (23) such that �y is an extreme point of P�x, �y is integral.

The following characterizes integral relaxations. A disjunct of (5) is redundant when its
feasible set lies within that of another disjunct. Obviously, redundant disjuncts can be dropped
without e�ect.

Theorem 4 Suppose that the disjunction (5) contains no redundant disjuncts, that 0 � x �
Mt, and that Mt satis�es (23) for t 2 T . For t; t

0 2 T with t 6= t0 de�ne

ytt0 = max
n
yt jMtyt � Atx� at +Mt; A

t0x � at
0

; 0 � x � m; yt � 1
o
:

Then the continuous relaxation of (23) is integral if and only if ytt0 = 0 for every pair t; t0 2 T
with t 6= t0.

15

Proof. It is clear that ytt0 can be written,

ytt0 = max
n
yt j A

tx � at �Mt(1� yt); A
t0x � at

0

; 0 � x � m; yt � 1
o
: (27)

It is convenient to let St be the feasible set for disjunct t 2 T ; i.e., St = fx j Atx � at; 0 �
x � mg. For �x 2 St0 de�ne

ytt0(�x) = max
n
yt j A

t�x � at �Mt(1� yt); yt � 1
o
: (28)

Claim. For any �x 2 St0 and any t 6= t0,

ytt0(�x) = max
y
fyt j y 2 P�xg : (29)

Proof of claim. It su�ces to show that any yt that is feasible in (29) is feasible in (28), and
vice-versa. The former is obvious. To show the latter, let yt be feasible in (27). To see that it
is feasible in (29), set yt0 = 1� yt and yt00 = 0 for t00 6= t; t0. It is enough to show

At00 �x � at
00

�Mt00(1� yt00) (30)

for all t00 2 T . But (30) holds for t00 = t by stipulation. It holds for t00 = t0 because �x 2 St0 ,
and it holds for t00 6= t; t0 by de�nition of Mt00 . This proves the claim.

Now suppose that ytt0 > 0 for some t; t0 with t 6= t0. Because the disjunct t0 is not redundant,
St0 is nonempty, and one can choose any �x1 2 St0 and note that ytt0(�x

1) > 0. Again because
disjunct t0 is not redundant, one can choose �x2 2 St0 n St and note that ytt0(�x

2) < 1. There
exists a convex combination �x 2 St0 of �x

1 and �x2 with 0 < ytt0(�x) < 1, so that ytt0(�x) is not
integral. But (29) implies that some �y with �yt = ytt0(�x) is an extreme point of P�x. It follows
that (23) is not integral.

For the converse, suppose that ytt0 = 0 for all pairs t; t0 with t 6= t0. It su�ces to show
that for any �x satisfying (5), any given extreme point �y of P�x is integral. If it is supposed that
�x 2 St0 , the following can be stated.

max fyt0 j y 2 P�xg = 1
max fyt j y 2 P�xg = 0; t 6= t0:

(31)

The �rst is due simply to the fact that �x 2 St0 . By the above claim, the second is equivalent
to ytt0(�x) = 0, which is implied by the fact ytt0 = 0. Now (31) implies that P�x is a line segment
of unit length extending from the origin in a positive direction along the yt0 axis. Thus any
extreme point �y 2 P�x is integral, which means that (23) is integral. 2

This specializes to disjunctions with one inequality per disjunct as follows.

Corollary 1 Consider a disjunction (8) with one inequality per disjunction and bounds 0 �
x � m. If (8) contains no redundant disjuncts, then (23) is integral if and only if

max
n
atx j at

0

x � �t0 ; 0 � x � m
o
= �t �Mt (32)

for every t; t0 2 T with t 6= t0.

The conditions in Theorem 4 and Corollary 1 are quite strict. In fact,

16

Corollary 2 The continuous relaxation of (23) is integral only if the feasible sets described by
the disjuncts of (5) are disjoint.

Proof. Suppose two of the feasible sets intersect, e.g. those corresponding to disjuncts t
and t0. Then y�t (t

0) = 1, which violates the condition of the theorem. 2
Not even disjoint feasible sets are su�cient for integrality, as the above example shows.

Furthermore, Corollary 1 and (15) imply that when there are two disjuncts containing one
inequality each, (23) is integral only if the feasible sets of the disjuncts are vertices or other
faces of the box 0 � x � m. Corollary 2 implies that the faces must also be disjoint.

3.6 Beaumont's Inequalities

Beaumont [7] identi�ed a class of facet-de�ning inequalities for disjunctive constraints in which
each disjunct consists of a single inequality, as in (8). They are facet-de�ning in the sense
that, under certain conditions, they de�ne facets of the convex hull of the feasible set of
(8). Unfortunately, these conditions are often unsatis�ed, which limits the usefulness of the
inequalities.

Beaumont's approach is essentially a reasonable method for choosing multipliers ut so as
to generate a disjunctive inequality (6). He �rst incorporates the bounds x � m into the
disjunction (8) to obtain _

t2T

"
�I
at

#
x �

"
�m
�t

#
; t 2 T:

The vector of nonnegative multipliers for each disjunct is ut = (vt; wt), where wt corresponds
to the last inequality in the disjunct. The object is to derive an inequality bx � � that satis�es

b � wta
t � vt

� � wt�t � vtm

for all t. For a given wt (yet undetermined), it is reasonable to make the components of b as
small as possible to get a tight constraint. So let

b = min
t

n
wta

t
o
; (33)

where the minimum is taken componentwise. One can now set

vt = wta
t � b; t 2 T;

because (33) implies vt � 0. To make the right-hand side of the inequality as tight as possible,
set

� = min
t2T

n
wt�t � vtm

o
: (34)

It remains to pick values for the wt's. Beaumont's choice is equivalent to setting wt =Mt when
Mt is derived from the variable bounds as in (10) and at � 0. Thus

wt =
1

�t � atm
: (35)

The approach breaks down when the denominator is nonpositive, whereupon Beaumont sug-
gests letting

wt =
1

�t �minfat; 0gm
: (36)

17

Theorem 5 (Beaumont) The inequality bx � � given by (33)-(35) is facet-de�ning for (8)
if �t � atm > 0 for all t 2 T .

Beaumont's inequality can therefore be superior to a supporting elementary inequality. This is
illustrated in Fig. 4, where Beaumont's inequality is the facet-de�ning inequality 2x1+x2 � 7.

Assuming �t � atm > 0 is equivalent to assuming that the point x = m is infeasible, in
which case it makes sense to separate this point from the feasible set. However, x = m is often
feasible, as in the example of Fig. 2. Here (35) puts (w1; w2) = (�1

4 ;�
1
5), and one must revert

to (36), which yields the useless inequality 3x1 + 2x2 � �2.
The underlying di�culty is that Beaumont's approach has no mechanism for detecting

which corner of the box 0 � x � m should be cut o� from the feasible set.

3.7 Optimal Separating Inequalities

When valid inequalities are added to the linear constraint set, there is always the possibility
that most of them will never play a role in the solution process. That is, the relaxations may
provide the same bounds even of most of the inequalities are removed.

This is true of the traditional continuous relaxation of an MILP model, for example. The
relaxation is nothing other than a set of valid inequalities, most of which are generally inactive
in the solution of the relaxation.

This phenomenon can be avoided by generating only separating inequalities, which are valid
inequalities that are violated by the current solution of the inequality constraints.

It is straightforward to state a small LP problem whose solution identi�es an separating
inequality for a disjunction if and only if one exists. Thus if no separating inequality is found,
the current solution is known to lie within the convex hull of the feasible set. In this case,
branching is necessary to obtain a feasible solution, unless of course the current solution is
already feasible. The inequality is optimal in the sense that it is chosen to maximize the amount
by which the current solution violates it. Unlike Beaumont's and elementary inequalities, this
sort of inequality can be generated when the disjuncts contain more than one inequality.

Suppose that the solution �x of the current LP is to be separated from the feasible set of
the disjunctive constraint (5). Any upper bounds x � m should be incorporated into each
disjunct of (5). Because any disjunctive inequality is de�ned by a choice of multipliers ut, an
LP model can be formulated so as to �nd a set of ut's that de�ne an inequality bx � � that is
maximally violated by �x. Such a model is,

max � � b�x (37)

s.t. � � utat; t 2 T

b � utAt; t 2 T

�e � b � e

ut � 0; t 2 T

�; b unrestricted.

Note that the variables in the model are �; b; u. If the objective function value is zero, there is
no separating inequality. The constraint �e � b � e ensures that an optimal solution exists.

18

The model (37) has an interesting dual:

min (s+ s0)e

s.t. �x�
X
t2T

xt = s� s0 (b)

Atxt � atyt; t 2 T (ut)X
t2T

yt = 1 (�)

s; s0; xt; yt � 0; t 2 T

(38)

If s�s0 is �xed to zero and �x is a variable, the constraint set is Balas' convex hull representation
for the disjunction (5) [4]. That is, when s� s0 = 0, the projection of the feasible set of (38)
onto the �x-space is the convex hull of the feasible set of (5). (This is related to the fact,
observed by Williams [73], that the dual of the dual of a disjunctive programming problem
is the convex hull representation of the problem.) The problem (38) therefore seeks a pointP

t2T x
t in the convex hull that is closest to �x, as measured by the rectilinear distance.

An optimal separating inequality can be superior to a supporting elementary inequality.
Consider the example of Fig. 4, which becomes0

B@�3x1 + x2 � �3
�x1 � �3
�x2 � �3

1
CA _

0
B@�x2 � �1
�x1 � �3
�x2 � �3

1
CA

The solution of (37) for �x = (1; 1) is � = �7
2 , b = (�1;�1

2), u
1 = (13 ; 0;

5
6), u

2 = (12 ; 1; 0), which
produces the facet-de�ning inequality 2x1 + x2 � 7.

The optimal separating inequality need not be facet-de�ning, however. If the convex hull of
the disjunction is the box de�ned by 0 � xj � m for j = 1; 2, the optimal separating inequality
for �x = (2; 2) is x1 + x2 � 2.

Optimal separating inequalities are roughly analogous to the optimal disjunctive cuts used
in the lift-and-project method of Balas, Ceria and Cornuejols [5]. One di�erence is that lift-and-
project cuts involve integer variables. Another is that they are derived from disjunctions of the
form yj = 0 _ yj = 1. Optimal separating inequalities may be derived from any disjunction,
and they are valid only in those portions of the search tree where the disjunction is valid.
Optimal separating inequalities have not been evaluated computationally, but the success of
lift-and-project cuts suggests that an evaluation is worthwhile.

4 Logic Processing

Logic processing can be understood as the derivation of logical implications from the constraint
set. It generates valid logic constraints, which are formulas q(h; y) that are implied by the set
S of formulas qi(y; h) in the model; i.e., all truth values of y and discrete values of h that make
the formulas in S true also make q(h; y) true.

Valid logic constraints are derived by inference algorithms that may also go by the name of
constraint propagation, preprocessing, etc. Feasibility checking is a special case of inference,
because a set of formulas is unsatis�able if and only if they imply a logical contradiction, such
as xj ^ :xj.

Cutting plane algorithms are actually special cases of inference algorithms. An inequality
can be viewed as a formula that is true when it is satis�ed. A cutting plane for a constraint set

19

S is an inequality that is satis�ed by all integer points that are feasible in S, and it is therefore
an implication of S. Logic processing algorithms can therefore be viewed as logical analogs of
cutting plane algorithms.

The advantage of logic processing is that it can reduce backtracking. It may, for example,
determine that the logical constraint set is infeasible and thereby prune the search tree at the
current node. It may also generate valid logic constraints that will prune the search tree at a
later time. Suppose, for example, that the formulas

x1 _ x100
x1 _ :x100

(39)

are among the logical constraints. Obviously x1 can be false in no feasible solution. Yet if
one branches on the variables in the order x1; : : : ; x100 and takes the branch x1 = false �rst,
one could conceivably search all 2100� 1 nodes in the corresponding subtree before discovering
that x1 must be true. However, if the valid logic constraint x1 had been derived from (39), the
subtree could have been eliminated immediately.

A theory to support this view of constraint generation has been developed in the constraint
satisfaction literature. Generating the constraint x1, for example, is viewed as increasing the
degree of \consistency" of the constraint set, which in turn reduces backtracking. Consistency is
not feasibility, as the word may suggest, but is roughly analogous to integrality in a polyhedral
setting, because a totally consistent constraint set can be solved without backtracking. There is
no space to present this theory here, but an expository development written for mathematical
programmers is available in [36].

In the context of MLLP, generating valid logic constraints has another advantage. It may
be possible to de�ne relaxations for the logic constraints in the continuous part of the model,
thereby strengthening the overall relaxation.

The discussion here will be limited to three types of inference algorithms that are useful
for logic processing: resolution, a simple form of constraint propagation, and the derivation
of \1-cuts" for knapsack constraints. In general one does not carry any of these algorithms
to completion. It is usually best to generate a few implications that seem most useful for the
problem at hand.

Valid (and nonvalid) logic constraints can also be derived from the special structure of a
problem, much as is done for polyhedral cuts. These constraints may be valid or nonvalid and
are discussed briey below.

4.1 Resolution

Resolution [51, 52, 58] was originally de�ned for logical clauses, which are disjunctions of
literals (atomic propositions or their negations). Resolution can derive valid logic constraints
for any set of formulas q(y) in which the variables y are atomic propositions, because any such
formula is equivalent to a �nite set of clauses.

Clause C1 implies clause C2 if and only every literal of C1 occurs in C2. Two clauses have
a (unique) resolvent when exactly one variable yj occurs positively in one and negatively in
the other. The resolvent is a disjunction of all literals that occur in either clause except yj and
:yj. For instance, y2 _:y3 is the resolvent of y1 _ y2 and :y1 _:y3. Given a set S of clauses,
the resolution algorithm picks a pair of clauses in S that have a resolvent that is implied by no
clause in S, and adds the resolvent to S. It repeats until there is no such pair, which occurs
after �nitely many iterations.

20

Theorem 6 (Quine [51, 52]) A clause set S implies clause C if and only if the resolution
algorithm applied to S generates a clause that implies C. In particular, S is unsatis�able if

and only if resolution generates the empty clause.

Thus resolution is somewhat analogous to Chv�atal's cutting plane procedure, because it gen-
erates all valid logic constraints in clausal form. Quine's theorem follows from Theorem 7,
proved below. Resolution has exponential complexity in the worst case [25] and can be very
slow in the typical case [28]. In practice, however, one would generate a limited number of
resolvents, such as those with k or fewer literals, for some small k.

Any formula q(y; h) that contains both atomic propositions y and discrete variables h is
equivalent to a �nite set of multivalent clauses. Logic constraints can be derived for a set of
formulas by applying a generalized form of resolution to clauses implied by them. A multivalent
clause has the form

n_
j=1

(hj 2 Hj); (40)

where each Hj is a subset of the domain Dj of hj . For notational simplicity, it is assumed that
an atomic proposition yj is written hj 2 fTg or hj 2 fFg, where hj is a bivalent variable. If
Hj is empty, the term (hj 2 Hj) can be omitted from (40), but it is convenient to suppose
that (40) contains a term for each hj . One multivalent clause

W
j(hj 2 H1j) implies anotherW

j(hj 2 H2j) if and only if H1j � H2j for each j.
The multivalent resolution algorithm is related to Cooper's algorithm for obtaining k-

consistency for a set of constraints [19]. Given a set of multivalent clauses,8<
:

n_
j=1

(hj 2 Hij)

������ i 2 I
9=
; ; (41)

the resolvent on hk of these clauses is
hk 2

\
i2I

Hik

!
_
_
j 6=k

hj 2

[
i2I

Hij

!
:

Ordinary bivalent resolution is a special case.
For example, the �rst three clauses below resolve on h1 to produce the fourth. Here each

hj has domain f1; 2; 3; 4g.
(h1 2 f1; 4g) _ (h2 2 f1g)
(h1 2 f2; 4g) _ (h2 2 f1; 2; 3g)
(h1 2 f3; 4g) _ (h2 2 f1g)
(h1 2 f4g) _ (h2 2 f1; 2; 3g)

It is pointless to resolve the �rst three clauses on h2, because this produces the tautology,

(h1 2 f1; 2; 3; 4g) _ (x2 2 f1g):

To apply the resolution algorithm to a set S of multivalent clauses, �nd a subset of S whose
resolvent M is implied by no clause in S, and add M to S. Continue until no further clauses
can be added to S.

The multivalent resolution algorithm derives all multivalent clauses that are valid logic
constraints for a given set of multivalent clauses. The proof of the theorem uses the idea of
Quine's original proof for ordinary resolution.

21

Theorem 7 A set S of multivalent clauses implies a multivalent clause M if and only if the
multivalent resolution algorithm applied to S generates a clause that implies M .

Proof. Multivalent resolution derives only implications of S because it is clearly valid. To
prove the converse, let S0 be the result of applying the algorithm to S. Also de�ne the length
of a clause (40) be

P
j jHjj. Suppose the theorem is false, and let (40) be a longest clause

implied by S but by no clause in S0.
Claim. At least one Hj in (40) is missing at least two elements; i.e., jDj n Hjj � 2 for

some j. First it is clear that no Hj = Dj , because otherwise (40) would be implied by a (in
fact, every) clause in S0. Suppose contrary to the claim that every Hj is missing exactly one
element, say vj. Then h = v = (v1; : : : ; vn) violates (40) and must therefore violate some
clause

W
j(hj 2 H 0

j) in S
0, because S0 implies (40). This means each H 0

j � Dj n fvjg, so thatW
j(hj 2 H

0
j) implies (40), contrary to hypothesis. This proves the claim.

Now suppose vk; v
0
k are missing from Hk, and consider the multivalent clauses

(hk 2 Hk [fvkg) _
_
j 6=k

(hj 2 Hj); (hk 2 Hk [fv
0
kg) _

_
j 6=k

(hj 2 Hj): (42)

They must respectively be implied by clauses M1;M2 2 S
0 because they are longer than (40).

This means that the resolvent ofM1;M2 on hk implies (40). So by construction of the resolution
algorithm, S0 contains a clause that implies (40), contrary to hypothesis. 2

The proof of the theorem shows that it su�ces in principle to generate resolvents only of
pairs of clauses.

Resolution can be generalized so as to obtain all valid constraints in the form of 0-1 knapsack
constraints (discussed in Section 4.3 below) for a system of such constraints [31]. Barth [6]
specialized this approach to obtain constraint generation techniques for extended clauses of the
form

P
j2J xj � k. These inequalities seem to be a useful compromise between 0-1 inequalities

and logical clauses, because they retain some of the expressiveness of the former and are yet
amenable to logic processing.

4.2 Constraint Propagation

Unit resolution, also known as forward chaining, provides a fast and very useful constraint
propagation algorithm for logical clauses. It is the same as full resolution except that one of
the parents of a resolvent is always a unit clause. For example, unit resolution �xes y1 to true
in the following clause set.

y3
y2_:y3

y1_:y2_:y3

Unit resolution is incomplete (i.e., does not derive all valid constraints), as can be seen in the
example,

y1_ y2_ y3
y1_:y2_ y3
y1_ y2_:y3
y1_:y2_:y3

Full resolution �xes y1 to true, but unit resolution does nothing because there are no unit
clauses to start with. Unit resolution is e�cient, however, as it runs in O(nL) time, if there
are n variables and L literals, and it tends to be very fast in practice.

22

Let S be a set f
P

j2Ji Lij � ki j i 2 Ig of extended clauses,

where each Lij is yj or :yj.
Let U be a stack of unit clauses, initially empty.

For each i 2 I with jJij = ki f
For each j 2 Ji add Lij to U.
Let Ji = ;.

g
While U is nonempty f

Remove L0t from U.
For each i 2 I with t 2 Ji f

If Lit = L0t then let ki = ki � 1, Ji = Ji n ftg.
Else f

If ki = jJij then stop; S is unsatisfiable.

Else f
If ki = jJij+ 1 then f

For each j 2 Ji n ftg add Lij to U.
Let Ji = ;.

g
Else let Ji = Ji n ftg.

g
g

g
g

Figure 6: A unit resolution algorithm for extended clauses.

Unit resolution is easily generalized to broader classes of formulas. It is adapted to extended
clauses in Fig. 6. A version for multivalent clauses and all-di�erent constraints appears in Fig. 7.

Unit resolution is a complete inference algorithm for certain classes of clauses, such as
Horn clauses, renamable Horn clauses, extended Horn clauses, etc. [14, 15, 16, 60, 66]. No
known structural property of a clause set is necessary and su�cient for the completeness of
unit resolution.

Unit resolution has the same inferential power as linear programming, in the following
sense. Suppose that the clauses of S are written as a system Ay � a of 0-1 inequalities in the
usual fashion; i.e., a clause

W
j2J Lj is written

P
j2J yj(Lj) � 1, where yj(Lj) is yj if Lj = yj

and is 1� yj if Lj = :yj.

Theorem 8 (Blair, Jeroslow, Lowe [10]) Unit resolution �nds a contradiction in the clause

set S if and only if the linear relaxation of the corresponding system Ay � a of 0-1 inequalities

is infeasible.

Ay � a is infeasible when unit resolution �nds a contradiction because unit resolution (unlike
resolution in general) simply adds the inequality representations of clauses. So deriving the
empty clause is equivalent to obtaining 0 � 1 from a nonnegative linear combination of Ay � a.
Conversely, if unit resolution detects no contradiction, then the inequalities that represent the

23

Let S be a set fCi j i 2 Ig of multivalent clauses, where each Ci

has the form
Wm
j=1(hj 2 Hij) _

W
t2Ti alldiff(fhj j j 2 Jtg)

Let ni be the number of terms (hj 2 Hij) of Ci with nonempty Hij.

Let U be a stack of indices representing active domains;

initially U = f1; : : : ;mg.
Let A be a list of enforced alldiff predicates, initially empty.

For each i 2 I f
If ni = 0 and jTij = 1 then:

Add the alldiff predicate in Ci to A and remove i from I.
Else if ni = 1 and jTij = 0 then

Let Hij be nonempty; let Dj = Dj \Hij and remove i from I.
g
While U is nonempty f

Remove an index k from U.
If Dk is empty then stop; S is unsatisfiable.

For all i 2 I f
If Hik is nonempty then f

If Dk � Hik then remove i from I.
Else f

Let Hik = Hik \Dk.

If Hik is empty then f
Let ni = ni � 1.
If ni = 1 and jTij = 0 then f

Let Hij be nonempty and remove i from I.
If Dj 6� Hij then

Let Dj = Dj \Hij and add j to U.
g
If ni = 0 and jTij = 1 then f

Remove i from I.
Add the alldiff predicate in Ci to A.

g
g

g
g

g
For each predicate alldiff(fhj j j 2 Jg) in A with k 2 J

If jDkj = 1 then
For j 2 J n fkg

If Dk � Dj then Let Dj = Dj nDk and add j to U.
g

Figure 7: A unit resolution algorithm for multivalent clauses.

24

remaining clauses can be satis�ed by setting each yj = 1=2.
Although LP duplicates the e�ect of unit resolution, the latter is preferable for logic pro-

cessing because it is much faster.

4.3 Knapsack Constraints

The familiar 0-1 knapsack constraint dy � �, where each yj 2 f0; 1g, can also be regarded as
a logical formula that is true when the sum over bj for which yj is true is at least �. Boolean
functions of this form are called threshold functions and are studied in the electrical engineering
literature [62]. They are di�cult to process logically, but they can be used to generate logic
constraints in the form of clauses and extended clauses, which are easily manipulated. For
example, the logical clauses implied by a knapsack constraint are identical to the well-known
\covering inequalities" for the constraint, and their derivation is straightforward (e.g., [24]).

It may be more e�ective, however, to infer extended clauses. Although it is hard to derive
all the extended clauses that are implied by a constraint, it is easy to derive all 1-cuts. Consider
a 0-1 inequality dy � � for which it is assumed, without loss of generality, that d1 � d2 � : : : �
dn > 0; if dj < 0, reverse its sign and add dj to �. A 1-cut for dy � � is one of the form,

y1 + y2 + : : :+ yj � k: (43)

The algorithm of Fig. 8, presented in [37], derives all valid 1-cuts. By way of example, the
knapsack constraint

13y1 + 9y2 + 8y3 + 6y4 + 5y5 + 3y6 � 30

gives rise to the 1-cuts,
y1 + y2 � 1
y1 + y2 + y3 � 2
y1 + y2 + y3 + y4 + y5 � 3:

The �rst cut could be deleted if desired, because it is redundant of the second. 1-cuts and
related cuts are discussed further in [37].

4.4 Structural Logic Constraints

An intuitive understanding of a problem can suggest logic constraints even when no further
valid inequalities are easily identi�ed. Such constraints may be nonvalid as well as valid, as
proposed by [39] in connection with the process synthesis example discussed in Section 6.2.
Structural constraints have also been derived for truss design problems [11], matching problems
[33], and a series of standard 0-1 problems discussed by Wilson [77].

A valid logic constraint was de�ned above for a set of formulas. It can be de�ned for an
MLLP model (1) as a formula q(y; h) that is true for every (x; y; h) that is feasible in (1). For
example, :y3 is a valid logic constraint for the problem

min x1 + x2
s.t. y1 ! (x1 � 1) y1 _ y2

y2 ! (x2 � 1)
y3 ! (x1 + x2 � 0)
x1; x2 � 0;

(44)

but is not implied by the formula y1 _ y2.

25

Let k = 1, s =
Pn

j=1 dj, klast = 0.

For j = 1; : : : ; n f
Let s = s� dj.
If s < � then f

While s+ dk < �:
Let s = s+ dk, k = k + 1.

If k > klast then f
Generate the cut y1 + : : :+ yj � k.
Let klast = k.

g
g

g

Figure 8: An algorithm for generating all 1-cuts for a knapsack constraint dy � � in which

d1 � d2 � : : : � dn > 0.

Logic constraints can be de�ned in a more general sense that permits them to be nonvalid.
Let (y; h) be feasible in (1) if (x; y; h) is feasible in (1) for some x. Let (y0; h0) dominate (y; h)
if for any (x; y; h) that is feasible in (1), there is a feasible (x0; y0; h0) for which cx0 � cx. Then
q(y; h) might be called a quasi-valid logic constraint if any feasible (y; h) that makes q(y; h)
false is dominated by a feasible (y0; h0) that makes q(y0; h0) true. A quasi-valid constraint may
be added to (1) without changing the optimal solution, but it may exclude feasible solutions.

For example, the formulas :y1 and :y2 are quasi-valid logic constraints for (44). They are
nonvalid because they exclude the feasible points (1; 0; 0); (1; 1; 0).

5 A Generic Branching Algorithm

A generic branching algorithm for MLLP appears in Fig. 9. For simplicity it assumes that the
propositions pj in (1) are atomic propositions yj, which is the case for all the problems solved
in the next section. When branching �xes yj to true or false, the formula yj or :yj is added
to the set Q of logical formulas qi(y; h). When hj is �xed to v, the domain Dj of hj is reduced
to fvg. Again for simplicity, it is assumed that one branches on hj by setting it to one value
at a time, but one could branch by partitioning its domain into subsets containing more than
one element.

Logic processing is applied to Q at each node. It may change the content of Q or remove
elements from some Dj 's. Linear relaxations of formulas in Q are added to the set L of linear
inequalities, if desired.

If Q or L is infeasible, the algorithm backtracks. Otherwise the solution �x of the LP
relaxation will in general satisfy certain constraint sets Ajx � aj and not others. If proposition
yj is not already �xed to true or false, it is temporarily assumed true if �x satis�es Ajx � aj

and false otherwise. If an un�xed yj corresponds to an empty constraint set, it can be given
a default temporary value that applies until it is �xed otherwise. If the values of the yj's and
hj 's, including the temporary values, make the formulas in Q true, �x is a feasible solution.
Otherwise optimal separating inequalities are added to L if desired. If there are no separating

26

inequalities, a variable is chosen for branching.
Traditional branch-and-cut for mixed 0-1 problems can be seen as a special case of the

algorithm of Fig. 9 by formally expressing the problem as follows.

min cx
s.t. Ax � a

0 � xj � 1; j = 1; : : : ; r
yj ! (xj = 1); j = 1; : : : ; r
:yj ! (xj = 0); j = 1; : : : ; r

Here branching on the yj's is equivalent to branching on the 0-1 variables x1; : : : ; xr. General
MILP problems can be written,

min cx

s.t.

Ax � a
0 � hj � mj; j = 1; : : : ; r
(hj = k)! (xj � k); k = 0; : : : ;mj ; j = 1; : : : ; r
(h0j = k)! (xj � k); k = 0; : : : ;mj ; j = 1; : : : ; r

mj_
k=0

(hj = k ^ h0j = k); j = 1; : : : ; r

One can branch on the alternatives xj � k � 1; xj � k by setting h0j = k � 1 and then hj = k.

6 Some Examples

Examples from four application areas are formulated and solved. The aim is to illustrate how
to choose between a traditional integer programming approach and other MLLP options for
a given problem. An attempt was made to choose problems with the avor or complexity of
real applications, although the warehouse location problem is somewhat stylized.

Each problem is formulated as an MLLP without any integer variables and as a traditional
MILP. Both are solved with the generic algorithm of Fig. 9, which in the case of an MILP
reduces to traditional branch-and-cut. The simplest possible algorithm is used in either case,
in order to isolate the e�ect of the speci�c MLLP features illustrated by each problem.

For logic-based models, the generic algorithm of Fig. 9 is eshed out as follows. The search
tree is traversed in depth-search manner, so that memory requirements for the tree are modest.
The branching rule is to branch on the �rst propositional variable in the �rst unsatis�ed logical
formula. Logic processing consists of the unit resolution algorithms of Figs. 6 and 7. The logical
formulas were represented in the same data structure used to provide inequality constraints
to CPLEX. The relaxation of logical formulas varies from case to case, as described below.
The code is written in C and compiled with the Sun C compiler version 1.1 with optimization.
The tests were conducted on a SPARC Station 330 running SUN OS version 4.1.1 and with
xx megabytes memory. The LP relaxations were solved by CPLEX version 3.0.

The MILP algorithm is a straightforward branch-and-bound procedure. The branching
rule is to branch on a variable whose value in the relaxation is nearest 1/2. The LP relaxations
were solved with the same CPLEX routine.

Run times and node counts for version 2.1 of the CPLEX MILP code are also reported. It is
argued in [35], however, that comparison with a commercial code may provide limited insight.
The many features of a commercial code make it di�cult to isolate which are responsible for
performance di�erences.

27

Let Q be a set of logical formulas, initially the formulas

qi(y; h) in (1).

Let L be a set of linear inequalities, initially empty,

Let T; F; U indicate true, false and undefined.

Let �y be a vector of truth values for y, initially �y = (U; : : : ; U).
Let D = (D1; : : : ; Dm) be the domains of h1; : : : ; hm.

Let �z be an upper bound on the optimal value, initially 1.

Let A be the set of active nodes, initially with A = f(Q;L; �y;D)g.
While A is nonempty f

Remove a tuple (Q;L; �y;D) from A.

Apply a logic processing algorithm to Q, possibly changing

the contents of Q, possibly changing some �yj's from U to T

or F, and possibly removing elements from some Dj's.

If no logical contradiction is detected then f
For each �yj changed to T, add Ajx � aj to L.

Generate inequality relaxations for formulas in Q and add them to L.

Let �x minimize cx subject to L.

If c�x < �z then f
For each yj f

If �yj 2 fT; Fg then let ŷj = �yj.
Else let ŷj = T if Aj�x � aj and ŷj = F otherwise.

g
Let C, initially empty, be the set of unsatisfied formulas.

For each qi(y; h) 2 Q f
If qi(ŷ; �h) is F or U then f

If desired, try to generate a separating inequality for

qi(y; h) with respect to (ŷ; �h).
If a separating inequality is generated then add it to L.

Else add qi(y; h) to C.

g
g
If C is empty then f

If no separating inequalities were generated then

�x is feasible; let x� = �x and �z = c�x.
Else add (Q;L; �y;D) to A.

g
Else f

Choose a variable yj with �yj = U or a variable hj with

jDj j > 1, such that setting yj to T or F, or setting hj
to one of its discrete values, satisfies or tends

to satisfy one of the formulas in C.

If yj is chosen then

Add (G [fyjg; L; �y;D) and (Q [f:yjg; L; �y;D) to A.

Else if hj is chosen then

For each v 2 Dj:

Set �D = D, set �Dj = fvg, and add (Q;L; �y; �D) to A.

g
g

g
g
If �z <1 then x� is an optimal solution.

Else the problem is infeasible.

Figure 9: A generic branching algorithm for MLLP.

28

6.1 A Flow Shop Problem

A scheduling problem that frequently occurs in chemical processing is a ow shop problem with
zero-wait transfer. There are several jobs, each representing a batch of some reagent. Each
job is processed on several machines (reactors). The machines are always visited in the same
order, but a given job may skip some of the machines. When a job's processing is completed
on one machine, it must move immediately to the next machine in its sequence. The objective
is to minimize makespan.

Let Ji be the set of machines on which job i is processed, and dij the processing time for
job i on machine j. If ti is the start time for job i, the job is completed at time

ti +
X
j2Ji

dij :

It is necessary to make sure that two jobs i; k are not scheduled to be in process at the same
time on the same machine j 2 Ji \ Jk. The �nish time of job i on machine j is ti+Dij, where

Dij =
X

j0 2 Ji
j0 � j

dij0 ;

and its start time is ti +Dij � dij . To avoid clashes one must say that for each machine j on
which jobs i; k are processed, job k starts after job i has �nished, or vice-versa. Thus for each
pair (i; k),

(ti +Dij � tk +Dkj � dkj; j 2 Ji \ Jk) _ (tk +Dkj � ti +Dij � dij ; j 2 Ji \ Jk:) :

The inequalities in either disjunct are the same except for the right-hand side. It is therefore
necessary to write only one disjunction in each disjunct, using the tightest right-hand side. An
MLLP model is,

min T

s.t. ti � 0; T � ti +
X
j2Ji

dij ; all i yik _ yki; all i; k, i 6= k.

yik ! (tk � ti � rik)

(45)

where
rik = max

j2Ji\Jk
fDij �Djk + dkjg:

A traditional MILP model can be formulated with big-M constraints.

min T (46)

s.t. ti � 0; T � ti +
X
j2Ji

dij ; all i

tk � ti � rik �M(1� yik); all i; k; i 6= k

ti � tk � rki �Myik all i; k; i 6= k

yik 2 f0; 1g; all i; k.

The problem can also be solved by solving m traveling salesman problems, where m is the
number of jobs [49].

29

Number of MLLP MILP CPLEX
jobs machines nodes time per nodes time per nodes time per

node node node
6 5 407 2.7 0.0066 689 10.1 0.0147 527 8.1 0.0154
7 5 1951 15.7 0.0080 3171 52.2 0.0165 2647 51.0 0.0193
8 5 14573 129.0 0.0089 24181 546.4 0.0226 16591 413.9 0.0249

Table 1: Computational results for ow shop problems with zero-time transfer, showing number

of nodes in the search tree, time in seconds, and seconds per node.

In this case one can anticipate that the logic-based formulation (45) is best, for two reasons:
a) the MILP representation of the disjunctions is not integral, and b) the linear relaxation of
0-1 scheduling constraints is weak (as discussed in Section 3.1), so that there is little to be lost
in forfeiting it. If there are m jobs and n machines, eliminating integer variables reduces the
number of variables in the LP relaxation from 2m+mn to 2m.

The nonintegrality of the MILP representation follows from Corollary 1, which implies that
it is integral if and only if

max ftk � ti j ti � tk � rki; (0; 0) � (ti; tk) � (mi;mk)g = rki �Mki

max fti � tk j tk � ti � rik; (0; 0) � (ti; tk) � (mi;mk)g = rik �Mik:
(47)

De�ning Mki;Mik by (15) yields (Mki;Mik) = (rki +mk; rik +mi). Also it is easy to see that
the two maxima in (47) are respectively equal to �rki and �rik. So (47) implies that the MILP
representation is integral if and only if (rki; rik) = (mk;mi), which does not occur in practice.

Three ow shop problems that represent process scheduling problems in a chemical plant
[56] were solved, and the results appear in Table 1. The logic-based approach generated about
60% as many nodes as MILP and used less than half as much time per node. It ran 3 to 4
times as fast as MILP on these problems.

6.2 A Processing Network Design Problem

Another common problem in chemical engineering is the design (\synthesis") of processing
networks. For instance, one may wish to separate the components (A, B, C, D) of a mixture
by passing it through various distillation units, as illustrated in Fig. 10. Each unit separates the
input mixture into two streams as indicated. The volumes of the outputs are �xed proportions
of the input. Clearly some of the units in the network of Fig. 10 are redundant. The problem is
to choose units and ow volumes so as to minimize �xed and variable costs, subject to capacity
and volume constraints. Such problems can involve processes other than distillation and are
often complicated by recycling of streams and waste heat, the latter typically resulting in a
nonlinear model that is not discussed here. In some problems the volume of streams into and
out of the network are semicontinuous variables.

Let E be the set of directed arcs in the network. The network contains a set I of unit
nodes, which represent processing units, and a set J of structural nodes, at which no unit is
present and ow is conserved. The ow on arc (i; j) is xij and incurs a unit cost of cij , typically
negative on output ows to indicate revenue. The �xed cost of unit i is fi and its capacity is
ki. Flow xij on arc (i; j) is �ij times the total input to unit i.

30

ABCD

AjBCD

ABCjD

BjCD

BCjD

ABjCD

AjBC

ABjC

CjD

BjC

AjB

�
�
�
�
�
��

@
@
@
@
@
@R

-

��
��
��
�*

hhhhhhhz

(((((
((:

HHHHHHHj

HHHHHHH

�
�
�
�
�
�

-�

@
@
@
@
@
@

��
��

��
�

-�

Q
Q
Q
Q
Q
Q
Q

�
�
�
�
�
�
�

-�

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

Figure 10: A 4-component separation network.

If proposition yi is true when unit i is installed, an MLLP model can be written,

min
X

(i;j)2E

cijxij +
X
i

zi

s.t.
X

(i;j)2E

xij =
X

(j;k)2E

xjk; j 2 J yi _ y
0
i; i 2 I

xij = �ij
X

(k;i)2E

xki; (i; j) 2 E; i 2 I

0 � xij � ki; (i; j) 2 E
yi ! (zi = fi); i 2 I

y0i !

zi = 0P

(i;j)2E xij = 0

!
; i 2 I:

An MILP model is,

min
X

(i;j)2E

cijxij +
X
i

fiyi (48)

s.t.
X

(i;j)2E

xij =
X

(j;k)2E

xjk; j 2 J

xij = �ij
X

(k;i)2E

xki; (i; j) 2 E; i 2 I

0 �
X

(i;j)2E

xij � kiyi; i 2 I

yi 2 f0; 1g; i 2 I

31

Semicontinuous variables xij are given the logical representation,

a0 � xij � bT yt _ y
0
t; t = 1; : : : ; T

yt ! (xij � at)
y0t ! (xij � bt�1)

(49)

and the MILP representation (2).
Elementary inequalities can be generated for the disjunctions yi _ y

0
i in (48). Because of

upper and lower bounds on the variables, the corresponding constraint sets can be written

yi ! (zi � fi)

y0i !

�zi � 0

�
P

(i;j)2E xij � 0

!

This expands into two disjunctions that can be relaxed.

(zi � fi) _ (�zi � 0) (50)

(zi � fi) _

0
@� X

(i;j)2E

xij � 0

1
A (51)

Because fi is an upper bound on zi, the elementary inequality (11) for (50) is simply 0 � 0,
which is useless. But the elementary inequality for (51) is

zi
fi
�

1

Mi

X
(i;j)2E

xij ; (52)

where Mi is an upper bound on the ow out of unit i. This inequality is easily seen to de�ne
a facet of the convex hull of the disjunction.

There are also some useful quasi-valid logic constraints. Note in Fig. 10 that one should
not install a distillation unit unless at least one adjacent upstream unit is installed, and all
adjacent downstream units are installed. For example, unit 3 should not be installed unless
unit 1 is installed, nor should unit 5 be installed unless both units 8 and 10 are present. This
produces the logic constraints

y3 ! y1; y5 ! (y8; y10);

which can be written as three clauses,

y1 _ :y3; :y5 _ y8; :y5 _ y10: (53)

These constraints are nonvalid because there is nothing infeasible about installing a unit that
carries no ow. One might suspect that a branch-and-bound search would not consider such
spurious solutions, so that the constraints (53) would have no e�ect. Experience reported in
[39, 54], however, shows that they can be very e�ective, a fact that is con�rmed here.

Although the linear relaxation of the MILP model can be duplicated with elementary
inequalities, and quasi-valid logic constraints are available, there is reason to believe a logic-
based approach is slightly worse than MILP. Once valid inequalities are added, the logic-based
LP is actually slightly larger than the MILP model. The nonvalid logic constraints, although

32

Problem MLLP MLLP MLLP MILP CPLEX MLLP MLLP MILP CPLEX
+dual +elem +elem. +elem. +logic +logic
ineq. ineq. ineq. ineq. constr. constr.

+logic +logic
constr. constr.

+logic
relax.

Node count

5-component sep. 61 21 15 17 11 9 3 3 7
+ 4 unit restr. 15 49 29 13 3 3 4
6-component sep. 1659 105 97 191 94 63 97 33 40
+ 5 unit restr. 9 163 56 5 3 3 15
Seconds

5-component sep. 0.91 3.39 0.41 0.31 0.33 0.35 0.40 0.18 0.40
+ 4 unit restr. 0.45 1.01 0.82 0.52 0.42 0.23 0.28
6-component sep. 33.3 26.5 2.3 5.6 3.5 2.6 8.1 3.3 3.5
+ 5 unit restr. 0.8 5.9 2.0 0.6 0.9 0.4 1.4

Table 2: Node counts and computation times in seconds for separation network synthesis prob-
lems.

logically inspired, can be added to an MILP model. Furthermore, Theorem 4 implies that the
0-1 formulation of the disjunction yi _ y

0
i is integral. It is easily checked that if 0-1 variables

y1; y2 correspond to the two disjuncts yi; y
0
i, then y12(y2) = y21(y1) = 0.

Some of the synthesis problems are modi�ed by �xing the number of units to be installed:X
i

yi = k:

To generate elementary inequalities, the formula is written as two inequalities.

P
i yi � k;

P
i y

0
i � k:

Elementary inequalities of the form (12) for these are respectively,

P
i zi=fi � k;

P
ij xij=Mi � n� k;

where n is the number of potential units.
Experimental results for two 5-component and two 6-component problems studied in [54]

are displayed in Table 2. The second 5-component problem �xes the total number of units to
4, and the second 6-component problem �xes it to 5. The solution methods are grouped by the
strength of the formulation. The problems are �rst solved with pure MLLP branching, without
any relaxation of the disjunctive constraints. The very poor results in the �rst column of the
table indicate the importance of using relaxations. The next column illustrates the expense of
generating dual inequalities, as discussed in Section 3.2.

The next three columns of the table compare MLLP, MILP and CPLEX using relaxations
that have the strength of the traditional continuous relaxation of the original problem; in the
MLLP case, this requires the elementary inequalities (52). The next column adds the logic
constraints described above to the MLLP model but not their relaxations. The last three
columns add logic constraints to the MILP and CPLEX models and elementary relaxations of
them to the MLLP model.

33

Problem Nodes Seconds
MLLP MILP CPLEX MLLP MILP CPLEX

10 processes, version 1 5 29 24 0.24 0.82 0.65
10 processes, version 2 13 35 52 0.41 0.88 1.47
38 processes, version 1 729 1083 677 199 376 178
38 processes, version 2 1907 3237 868 559 1173 271
38 processes, version 3 1161 1999 345 306 836 104
38 processes, version 4 1901 2861 747 514 1093 229
38 processes, version 5 1081 1561 296 287 551 89

Table 3: Node counts and computation times in seconds for 10-process and 38-process network

synthesis problems.

The results suggest that adding nonvalid logic constraints can bring a substantial improve-
ment in an MILP context. They also reduce the number of nodes generated by the CPLEX
MILP routine, which indicates that their employment does not merely duplicate the action of
the CPLEX preprocessor. Experiments reported in [54] provide a similar indication for the
OSL preprocessor. As predicted, MILP is slightly better than a logic-based approach.

The use of propositional variables is highly advantageous, however, for representing semi-
continuous variables are added to the problem. As noted earlier, the 0-1 representation is
nonintegral, and any continuous relaxation of it is useless.

The 10-process and a 38-process problem described in [59] were solved. All the valid
constraints described above were used, except that relaxations for the nonvalid logic constraints
were omitted form the logic-based model. The results appear in Table 3. The 10-process
problem has 3 semicontinuous variables, and the 38-process problem has 7. Di�erent versions
of the problem were obtained by varying the time horizon and the placement of intervals.

The results show that a logical representation of semicontinuity roughly halves the com-
putation time, even though semicontinuity accounts for only about half the discrete variables.
A reasonable approach for these problems would therefore be to use the traditional approach
for everything except the semicontinuous variables. The MLLP framework provides this kind
of exibility.

The CPLEX preprocessor eliminated most of the rows and columns of the 38-process prob-
lems (but not the 10-process problems) and therefore obtained superior performance on these
problems. It is impossible to analyze this result without detailed knowledge of the preprocessor.
Perhaps the operation that proved so e�ective could be added to the MLLP algorithm.

6.3 A Warehouse Location Problem

A simple warehouse location problem is to choose a set of warehouses of limited capacity so
as to serve a set of demand points while minimizing �xed and transport costs. Let

xij = ow from warehouse i to demand point j.
fi = �xed cost of warehouse i.
ki = capacity of warehouse i.
dj = demand at point j.
cij = unit transport cost from i to j.

34

An MLLP model can be written,

min
X
i

zi +
X
ij

cijxij

s.t.
X
j

xij � ki; all i yi _ y
0
i; all iX

i

xij � dj; all j

zi; xij � 0; all i; j
yi ! (zi = fi); all i
y0i ! (

P
j xij = 0); all i

The traditional MILP model is

min
X
i

fiyi +
X
ij

cijxij

s.t.
X
j

xij � kiyi; all i

X
i

xij � dj ; all j

xij � 0; all i; j;

yi 2 f0; 1g; all i:

The formulation of elementary inequalities for the disjunctive constraints yi_y
0
i is the same

as in the network synthesis problems. The fact that total installed warehouse capacity must
accommodate total demand gives rise to the valid knapsack constraint,X

i

kiyi �
X
j

dj : (54)

It can be viewed as a logical formula whose elementary relaxation can be added to the LP
model: X

i

ki(zi=fi) �
X
j

dj:

1-cuts can be derived from (54) as described in Section 4.3, and their elementary relaxations
added to the LP.

The 0-1 representation is again integral. The MLLP is also a little larger than the MILP
model, because it contains elementary inequalities for the disjunctions, and furthermore be-
cause the MILP model combines the capacity constraints with the big-M constraints. The
1-cuts can be used in the MILP as well as the logic model. One would therefore expect an
MILP formulation to have a small advantage.

Seven warehouse location problems from [8] were solved, and the results appear in Table 4.
Each problem has 50 demand points with a total demand of 58,268. The number of warehouses
is shown. Each warehouse has the same capacity, and the ratio of total warehouse capacity to
total demand is shown as \Cap. ratio."

The 1-cuts were used in the MLLP model but not the MILP model. They result in a 20-
30% reduction in the number of nodes but contributed to a 30-50% increase in the amount of
time per node, because of they enlarge the LP model. The net result is that MLLP is slightly

35

Problem No. Cap. Nodes Seconds Seconds per node
whse ratio MLLP MILP CPLEX MLLP MILP CPLEX MLLP MILP CPLEX

CAP41 16 1.37 57 81 62 8.6 8.8 5.5 0.15 0.11 0.09
CAP42 16 1.29 59 81 57 8.9 8.6 5.5 0.15 0.11 0.10
CAP43 16 1.29 61 83 42 9.1 8.9 4.4 0.15 0.11 0.10
CAP44 16 1.37 43 61 40 7.1 6.8 4.3 0.17 0.11 0.11
CAP51 16 2.75 1239 1429 1134 172 135 92 0.14 0.09 0.08
CAP61 16 3.86 2147 2631 3017 266 237 235 0.12 0.09 0.08
CAP71 16 16.00 3481 4495 8830 409 398 658 0.12 0.09 0.07
1 10 6.12 61 147 31 1.21 0.70 0.57 0.020 0.015 0.018
2 10 5.10 63 45 25 1.34 0.67 0.52 0.021 0.015 0.021
3 10 4.08 71 73 59 1.54 1.14 1.17 0.022 0.016 0.020
4 10 3.06 49 173 138 1.11 2.61 2.50 0.023 0.015 0.018
5 10 2.04 19 31 27 0.45 0.45 0.55 0.024 0.015 0.020
6 10 1.02 3 21 20 0.16 0.30 0.32 0.053 0.014 0.016

Table 4: Node counts, computation times in seconds, and seconds per node for warehouse

location problems.

slower than MILP. The 1-cuts are therefore useful, but as predicted, one should use them in a
traditional MILP relaxation.

Problems 1-6 in the table were solved to test the hypothesis that 1-cuts have greater
e�ect when the problem is more tightly constrained, as roughly indicated by the ratio of total
warehouse capacity to total demand. The problems are identical except for the warehouse
capacity. There are 7 demand points with demands 4,5,6,7,8,9,10. The data tend to con�rm
the hypothesis.

6.4 The Progressive Party Problem

The �nal problem to be considered is a scheduling problem posed by a \progressive party"
that was organized at a yachting rally in England. The problem gained some notoriety when
a group of mathematical programmers and constraint programmers found it to be intractable
for the former and soluble by the latter, albeit with some manual intervention [64].

In a progressive party, the object is for the crews of a eet of yachts to visit a subset of
yachts and mingle with the other crews. The visiting crews move to di�erent boats at the end
of each phase of the party. Presumably to simplify the provision of refreshments and so forth,
the number of host yachts should be small.

The problem can be more precisely de�ned as follows. A set I of boats is given. Each boat
i occupied by a crew of ci persons and has space for Ki persons on board. The problem is to
minimize the number of host boats. Each crew i visits a di�erent host boat hit in each period
t, unless it is itself a host, indicated by the truth of proposition �i. In the latter case hit = i for
all t. To encourage mingling, no pair of visiting crews are permitted to meet more than once.
The proposition mijt is true when non-host crews i and j visit the same boat in period t.

For checking capacity constraints it is convenient to de�ne a proposition vijt that is true
when hit = j. The only propositions that enforce linear inequality constraints are the �i's,
which force zi = 1 when true.

An MLLP model can be written as follows. The objective function counts the number of

36

host boats.

min
P

i2I zi
s.t. zi � 0; i 2 I vijt � (hit = j); i; j 2 I; t 2 T (a)

�i ! (zi � 1); i 2 I �i _ alldi�(hi1; : : : ; hijT j); i 2 I (b)

�i � (hit = i); i 2 I; t 2 T (c)P
i 2 I

i 6= j

civijt � Kj � cj ; j 2 I; t 2 T (d)

�i _ �j _mijt _ (hit 6= hjt); i; j 2 I; i < j; t 2 T (e)P
t2T mijt � 1; i; j 2 I; i < j (f)

hit 2 f1; : : : ; jIjg; i 2 I; t 2 T
(55)

Formula (a) de�nes vijt. Formula (b) says that crew i should visit a di�erent boat in each
period unless it is a host crew. Formula (c) causes a crew to remain on its own boat if and
only if it are a host crew. Knapsack constraint (d) is the boat capacity constraint. Formula
(e) says that if crews i and j are both visiting crews (i.e., �i and �j are false), then either mijt

is true or hit 6= hjt; i.e., mijt is true if the two crews visit the same boat in period t. The next
formula (f) says that a pair of visiting crews should not meet more than once.

The entire model has O(jIj2jT j) variables and constraints. The LP is trivial, as it consists
only of an objective function and constraints of the form zi � 1. The LP will become more
interesting when inequalities are added to strengthen the relaxation.

Formulation of an MILP model is more di�cult. The most challenging constraint is the
one that requires visiting crews to meet at most once. The authors of [64] remark that if this
is formulated using the variables vijt, O(jIj

4jT j2) constraints are generated. Because this is
impractical, they introduce O(jIj3jT j) variables yijkt, which take the value 1 when crews j; k
meet on boat i in period t. But because there are 29 boats in the problem, this results in an
enormous number of binary variables.

A more compact MILP model is suggested here. It reinterprets the multivalent variables
hit as numeric variables and enforces the all-di�erent constraints with big-M constraints. The
variables hit need not be explicitly constrained to be integral, because the remaining constraints
enforce integrality. The model has O(jIj2jT j) integer variables and constraints, many fewer
than the model of [64].

The objective function (a) in the model below again counts the number of host boats.
Constraints (b) and (c) require a crew to remain on their own boat if and only if they are a
host crew. Constraints (d)- (f) use a disjunctive mechanism to relate vijt to hit. They say that
if hit = j (i.e., :�ijt and :�ijt, which say that hit is neither less than nor greater than j),
then vijt = 1. Constraint (h) plays the role of the all-di�erent constraint. Constraints (i)-(k)
again use a disjunctive mechanism to say that if i and j are visiting crews and hit = hjt, then

37

mijt = 1.

min
P

i2I �i (a)
s.t. �j + (1� vijt) � 1; i; j 2 I; t 2 T (b)

(1� �i) + viit � 1; i 2 I; t 2 T (c)
vijt + �ijt + �ijt � 1; i; j 2 I; t 2 T (d)
�hit + j � 1� jIj(1 � �ijt); i; j 2 I; t 2 T (e)
hit � j � 1� jIj(1� �ijt); i; j 2 I; t 2 T (f)P

i 2 I

i 6= j

civijt � Kj � cj ; j 2 I; t 2 T (g)

P
t2T vijt � 1; i; j 2 I; i 6= j (h)

�i + �j +mijt + �ijt + ijt � 1; i; j 2 I; i < j; t 2 T (i)
�hit + hjt � 1� jIj(1 � �ijt) i; j 2 I; i < j; t 2 T (j)
hit � hjt � 1� jIj(1 � ijt) i; j 2 I; i < j; t 2 T (k)P

t2T mijt � 1; i; j 2 I; i < j (l)
1 � hit � jIj; �i; vijt; �ijt; �ijt;mijt; �ijt; ijt 2 f0; 1g; all i; j; t:

(56)

An alternate form of this model replaces constraints (d)-(f) with the constraints

hit =
X
j

jvijt;

resulting in a somewhat smaller formulation. In preliminary computational tests, this some-
times improved and sometimes worsened solution time.

The logic-based formulation was augmented with a simple logic constraint that requires
the number of host boats to be no less than the number of periods:X

i2I

�i � jT j: (57)

This was represented by an elementary inequality in the LP relaxation at each node. As in the
warehouse location problem, there is a valid knapsack constraint that ensures there is enough
capacity to meet total demand: X

i2I

Ki�i �
X
i2I

ci: (58)

An elementary inequality for this was added to the LP relaxation. 1-cuts were also generated
for (58) and their relaxations added to the LP. Elementary inequalities were not generated for
the knapsack constraints (55d). The logic processing was achieved by a section of code that in
e�ect implements the unit resolution algorithms of Figs. 6 and 7.

The MILP model was also augmented with the logic constraints (57). There was no need
to add (58) because it is a linear combination of the other constraints.

The logic-based model (55) is not only simpler but has a substantial computational ad-
vantage. This is primarily because of the huge number of discrete variables, which are more
e�ciently processed in the logical part of the problem.

The computational results appear in Table 5. Due to the di�culty of the problem, only
the CPLEX implementation of MILP was used. It was run with a feature that identi�es
specially ordered sets (sosscan), because MLLP's processing of propositional variables that
are not associated with linear constraint sets can be viewed as incorporating the advantage of
using type 1 specially ordered sets.

38

Boats Periods Nodes Seconds Seconds per node
MLLP CPLEX MLLP CPLEX MLLP CPLEX

5 2 171 1136 0.98 197.0 0.006 0.173
6 2 239 5433 1.41 1708 0.006 0.314
6 3 37 366 0.25 162.8 0.007 0.445
7 3 71 44 0.52 44.6 0.007 1.014
8 3 209 2307 1.63 3113 0.008 1.349
8 4 167 582 1.35 887.5 0.008 1.525
10 3 1143973 20000� 12259 54150� 0.011 2.708
10 4 28923 20000� 319 43223� 0.011 2.161

�Computation was terminated after 20,000 nodes, without �nding an integer solution.

Table 5: Node counts, computation times in seconds, and seconds per node for the progressive
party problem.

The original problem described in [64] had 29 boats and 6 periods and was solved by the
ILOG Solver, but only after specifying exactly which boats were to serve as hosts, and even
then only after manual intervention. The authors of [64] report that XPRESSMP solved an
MILP model of the problem with 15 boats and 4 periods, but only after specifying that only
boats 1-8 (in descending order of Ki � ci) could serve as hosts and only crews 5-15 could visit
other boats (the optimal solution uses 5 hosts). The problems were solved here without any
manual intervention. When the problem contains jIj boats, they are the jIj largest boats as
measured by Ki � ci.

Both solution methods could no doubt be improved with more intelligent branching and
other devices. But the underlying computational advantage of a logical representation is clear
and is due primarily to a much smaller LP relaxation and the speed of logic processing.

7 Conclusions

We conclude that the larger repertory of modeling and solution options in MLLP can, if
judiciously chosen, provide a more exible modeling environment than MILP alone, without
sacri�cing solution e�ciency and in some cases substantially improving it.

We attempt here to collect some rough guidelines for choosing the options, based on compu-
tational experience to date. The basic issue addressed is what part of the constraint set should
be given a logical formulation, and what part should be embedded in the linear model with
the help of integer variables. It is assumed throughout that constraints with purely continuous
variables appear in the continuous portion of the model.

Because the formulas pj of (1) all have the form yj in the problems solved, the discussion
here assumes that they have this form. In general some propositions yj enforce one or more
linear inequality constraints when they are true, and others do not. It is convenient to refer to
the former as linked and the latter as unlinked.

� As a general rule, constraints should receive the most convenient formulation, unless
one of the considerations to follow indicates otherwise. For example, a 0-1 knapsack
constraint ax � � (where some coe�cients aj are other than 0, 1, �1) should be written
as a 0-1 inequality. Constraints with a logical avor, however, should normally be appear

39

in logical form. These might include disjunctions, implications, etc.

� Constraints that contain primarily unlinked propositions in their logical form should
normally be written in that form. It is likely that logic processing is as useful as solving
the linear relaxation of the 0-1 formulation; it is equivalent when the logical formulas
are clauses. The advantage of a logical formulation can be substantial when there are a
large number of unlinked propositions, as illustrated by the progressive party problem.

� For constraints that contain primarily linked propositions in their logical formulation,
the best treatment depends on the nature of the relaxation.

{ If there is no good linear relaxation, as in the case of the ow job scheduling disjunc-
tions and the semicontinuous variables discussed earlier, then the constraints should
receive a logical formulation. In this case the overhead of using integer variables is
unjusti�ed.

{ If a good linear relaxation exists, the following considerations apply. If the contin-
uous relaxation of the 0-1 formulation can be duplicated or improved upon using a
small number of (strengthened) elementary cuts or other cuts, then the logical for-
mulation should be used, and the cuts added to the LP. Examples of this were given
in Sections 3.3 and 3.4. If the cuts required to duplicate the continuous relaxation
are too numerous or unavailable, then the constraints should receive a traditional 0-
1 formulation. This was the situation in the warehouse location and process network
design problems (aside from the semicontinuous variables in the latter).

{ It may be advantageous to use both a logical and a 0-1 formulation, so as to apply
logic processing to the former and obtain a relaxation from the latter.

� If the 0-1 representation is nonintegral, this argues against it, because branching may
continue unnecessarily. The ow shop problems and semicontinuous variables serve as
examples.

� Any logic cuts (valid or nonvalid) that can be identi�ed are probably useful. Examples of
these include the nonvalid cuts generated for the network design problems and the 1-cuts
used in the warehouse and party problems. Logic cuts can be represented in logical form,
0-1 form, or both, depending on factors already discussed.

� Optimal separating cuts have not been tested computationally, but the success of sep-
arating cuts and lift-and-project cuts (to which they are analogous) suggests that they
could be useful. It may also be bene�cial to use Benders cuts, which can be generalized
to a logic-based setting [34].

� It may be possible to construct useful linear relaxations of common logical formulas that
contain multivalued discrete variables (other than integer variables), such as all-di�erent
constraints. This issue is now under investigation.

A software package based on MLLP would probably require more expertise that existing
ones based on MILP. Ultimately, however, a large class of combinatorial problems may always
require a certain amount of expertise for their solution. The issue is how much user intervention

40

is appropriate. It seems unreasonable to restrict oneself to automatic routines in general-
purpose solvers when some simple additional devices may obtain solutions that are otherwise
out of reach. At the other extreme, it is impractical to invest in every new problem the years of
research e�ort that have been lavished on traveling salesman and job shop scheduling problems.
MLLP is designed to present a compromise between these two extremes.

References

[1] Aiba, A., K. Sakai, Y. Sato, D. J. Hawley and R. Hasegawa, Constraint logic programming
language CAL, Fifth Generation Computer Systems, Springer, (Tokyo, 1988).

[2] Balas, E., Disjunctive programming: Cutting planes from logical conditions, in O. L.
Mangasarian, R. R. Meyer and S. M. Robinson, eds., Nonlinear Programming 2, Academic
Press (New York, 1975) 279-312.

[3] Balas, E., A note on duality in disjunctive programming, Journal of Optimization Theory

and Applications 21 (1977) 523-527.

[4] Balas, E., Disjunctive programming, Annals Discrete Mathematics 5 (1979) 3-51.

[5] Balas, E., S. Ceria and G. Cornu�ejols, Mixed 0-1 programming by lift-and-project in a
branch and cut framework, Management Science 42 (1996) 1229-1246.

[6] Barth, P., Logic-Based 0-1 Constraint Programming, Kluwer Academic Publishers
(Boston, 1995).

[7] Beaumont, N., An algorithm for disjunctive programs, European Journal of Operational

Research 48 (1990) 362-371.

[8] Beasley, J. E., An algorithm for solving large capacitated warehouse location problems,
European Journal of Operational Research 3 (1988) 314-325.

[9] Blair, C., Two rules for deducing valid inequalities for 0-1 problems, SIAM Journal of

Applied Mathematics 31 (1976) 614-617.

[10] Blair, C., R. G. Jeroslow, and J. K. Lowe, Some results and experiments in programming
techniques for propositional logic, Computers and Operations Research 13 (1988) 633-
645.

[11] Bollapragada, S., O. Ghattas and J. N. Hooker, Optimal design of truss structures by
mixed logical and linear programming, manuscript, Graduate School of Industrial Admin-
istration, Carnegie Mellon University, Pittsburgh, PA 15213 USA (1995).

[12] Bratko, I., PROLOG Programming for Arti�cial Intelligence, International Computer

Science, Addison-Wesley (1986).

[13] BULL Corporation, CHARME VI User's Guide and Reference Manual, Arti�cial Intelli-
gence Development Centre, BULL S.A. (France, 1990).

[14] Chandru, V., C. R. Coullard, P. L. Hammer, M. Monta~nez, and X. Sun, On renamable
Horn and generalized Horn functions, Annals of Mathematics and AI 1 (1990) 33-48.

41

[15] Chandru, V., and J. N. Hooker, Extended Horn clauses in propositional logic, Journal of
the ACM 38 (1991) 205-221.

[16] Chandru, V., and J. N. Hooker, Detecting embedded Horn structure in propositional logic,
Information Processing Letters 42 (1992) 109-111.

[17] Colmerauer, A., H. Kanouia, R. Pasero and P. Roussel, Un syst�eme de communication
homme-machine en fran�cais, technical report, Universit�e d'Aix-Marseilles II, Groupe in-
telligence arti�cielle (1973).

[18] Colmerauer, A., An introduction to Prolog III, Communications of the ACM 33 (1990)
52-68.

[19] Cooper, M. C., An optimal k-consistency algorithm, Arti�cial Intelligence 41 (1989) 89-
95.

[20] Dincbas, M., P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Bertier, The con-
straint programming language CHIP, Proceedings on the International Conference on Fifth

Generation Computer Systems FGCS-88, Tokyo, December 1988.

[21] Drexl, A., and C. Jordan, A comparison of logic and mixed-integer programming solvers
for batch sequencing with sequence-dependent setups, to appear in INFORMS Journal on

Computing.

[22] Freuder, E. C., Exploiting structure in constraint satisfaction problems, in B. Mayoh, E.
Tyugu and J. Penjam, eds., Constraint Programming, Springer (1993) 50-74.

[23] Glover, F., Surrogate constraint duality in mathematical programming, Operations Re-

search 23 434-451.

[24] Granot, F., and P. L. Hammer, On the use of boolean functions in 0-1 linear programming,
Methods of Operations Research (1971) 154-184.

[25] Haken, A., The intractability of resolution, Theoretical Computer Science 39 (1985) 297-
308.

[26] Hammer, P. L., and S. Rudeanu, Boolean Methods in Operations Research and Related

Areas, Springer Verlag (Berlin, New York, 1968).

[27] Hooker, J. N., Resolution vs. cutting plane solution of inference problems: Some compu-
tational experience, Operations Research Letters 7 (1988) 1-7.

[28] Hooker, J. N., Generalized resolution and cutting planes, Annals of Operations Research

12 (1988) 217-239.

[29] Hooker, J. N., A quantitative approach to logical inference, Decision Support Systems 4
(1988) 45-69.

[30] Hooker, J. N., Input proofs and rank one cutting planes, ORSA Journal on Computing 1
(1989) 137-145.

[31] Hooker, J. N., Generalized resolution for 0-1 linear inequalities, Annals of Mathematics

and AI 6 (1992) 271-286.

42

[32] Hooker, J. N., Logical inference and polyhedral projection, Proceeedings, Computer Sci-
ence Logic Workshop (CSL'91), Lecture Notes in Computer Science 626 (1992) 184-200.

[33] Hooker, J. N., Logic-based methods for optimization, in A. Borning, ed., Principles and

Practice of Constraint Programming, Lecture Notes in Computer Science 874 (1994) 336-
349.

[34] Hooker, J. N., Logic-based Benders decomposition, available at
http://www.gsia.cmu.edu/afs/andrew/gsia/jh38/jnh.html (1995).

[35] Hooker, J. N., Testing heuristics: We have it all wrong, Journal of Heuristics 1 (1995)
33-42.

[36] Hooker, J. N., Constraint satisfaction methods for generating valid cuts, available at
http://www.gsia.cmu.edu/afs/andrew/gsia/jh38/jnh.html (1997).

[37] Hooker, J. N., and N. R. Natraj, Solving 0-1 optimization problems with k-tree relaxation,
in preparation.

[38] Hooker, J. N., and G. Rago, Partial instantiation methods for logic programming, Grad-
uate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA
15213 USA (1995).

[39] Hooker, J. N., H. Yan, I Grossmann, and R. Raman, Logic cuts for processing networks
with �xed charges, Computers and Operations Research 21 (1994) 265-279.

[40] Howard, R. A., and J. E. Matheson, Inuence diagrams, in R. A. Howard and J. E.
Matheson, eds., The Principles and Applications of Decision Analysis, v. 2, Strategic
Decision Group, Menlo Park, CA (1981).

[41] Ja�ar, J., and J.-L. Lassez, Constraint logic programming, Proceedings of the 14th ACM

Symposium on Principles of Programming Languages, M�unchen, ACM (1987) 111-119.

[42] Ja�ar, J., and J.-L. Lassez, From uni�cation to constraints, Logic programming 87, Pro-

ceedings of the 6th Conference, Springer (1987) 1-18.

[43] Jeroslow, R. E., Representability in mixed integer programming, I: Characterization re-
sults, Discrete Applied Mathematics 17 (1987) 223-243.

[44] Jeroslow, R. E., Logic-Based Decision Support: Mixed Integer Model Formulation, Annals

of Discrete Mathematics 40. North-Holland (Amsterdam 1989).

[45] Jeroslow, R. E., and J. K. Lowe, Modeling with integer variables, Mathematical Program-

ming Studies 22 (1984) 167-184.

[46] Kowalski, R. A., Predicate logic as programming language, Proceedings of the IFIP

Congress, North-Holland (Amsterdam, 1974) 569-574.

[47] McAloon, K., and C. Tretko�, 2LP: Linear programming and logic programming, in P. van
Hentenryck and V. Saraswat, eds., Principles and Practice of Constraint Programming,
MIT Press (1995) 99-114.

43

[48] McAloon, K., and C. Tretko�, Optimization and Computational Logic, to be published by
Wiley.

[49] Piehler, J., Ein Beitrag zum Reihenfolgeproblem, Unternehmenforschung 4 (1960) 138-
142.

[50] Puget, J.-F., A C++ implementation of CLP, Technical report 94-01, ILOG S.A., Gentilly,
France (1994).

[51] Quine, W. V., The problem of simplifying truth functions, American Mathematical

Monthly 59 (1952) 521- 531.

[52] Quine, W. V., A way to simplify truth functions, American Mathematical Monthly 62
(1955) 627-631.

[53] Raman, R., and I. E. Grossmann, Relation between MILP modeling and logical inference
for chemical process synthesis, Computer and Chemical Engineering 15 (1991) 73-84.

[54] Raman, R., and I. E. Grossmann, Symbolic integration of logic in MILP branch and bound
methods for the synthesis of process networks, Annals of Operations Research 42 (1993)
169-191.

[55] Raman, R., and I. E. Grossmann, Symbolic integration of logic in mixed-integer linear
programming techniques for process synthesis, Computers and Chemical Engineering 17
(1993) 909-927.

[56] Raman, R., and I. E. Grossmann, Modeling and conputational techniques for logic based
integer programming, Computer and Chemical Engineering 18 (1994) 563-578.

[57] Remy, C., Programming by constraints, Micro Systemes No. 104 (1990) 147-150.

[58] Robinson, J. A., A machine-oriented logic based on the resolution principle, Journal of
the ACM 12 (1965) 23-41.

[59] Sahinidis, N. V., I. E. Grossmann, R. E. Fornari and M. Chathrathi, Optimization model
for long range planning in the chemical industry, Computers and Chemical Engineering

13 (1989) 1049-1063.

[60] Schlipf, J. S., F. S. Annexstein, J. V. Franco and R. P. Swaminathan, On �nding solutions
for extended Horn formulas, Information Processing Letters 54 (1995) 133-137.

[61] Sciamma, D., J. Gay, A. Guillard, CHARME: A constraint oriented approach to schedul-
ing and resource allocation, Arti�cial Intelligence in the Paci�c Rim, Proceedings of the
Paci�c Rim International Conference on Arti�cial Intelligence, Nagoya, Japan (1990) 71-
76.

[62] Sheng, C.-L., Threshold Logic, Academic Press (New York, 1969).

[63] Simonis, H., and M. Dincbas, Propositional calculus problems in CHIP, in F. Benhamou
and A. Colmerauer, eds., Constraint Logic Programming: Selected Research, MIT Press
(Cambridge, MA, 1993) 269-285.

44

[64] Smith, B. M., S. C. Brailsford, P. M. Hubbard, H. P. Williams, The progressive party prob-
lem: Integer linear programming and constraint programming compared, in U. Montanari
and F. Rossi, eds., Proceedings of Principles and Pratice of Constraint Programming,
Cassis, France, Springer (1995) 36-52.

[65] Sterling, L., and E. Shapiro, The Art of Prolog: Advanced Programming Techniques, MIT
Press (Cambridge, MA, 1986).

[66] Swaminathan, R. P., and D. K. Wagner, The arborescence-realization problem, Discrete
Applied Mathematics 59 (1995) 267-283.

[67] Tsang, E., Foundations of Constraint Satisfaction (London, Academic Press) 1993.

[68] Turkay, M., and I. E. Grossmann, Logic-based MINLP algorithms for the optimal synthesis
of process networks, Computer and Chemical Engineering 20 (1996) 959-978.

[69] Van Hentenryck, P., Constraint Satisfaction in Logic Programming, MIT Press (Cam-
bridge, MA, 1988).

[70] Williams, H. P., Fourier-Motzkin elimination extension to integer programming problems,
Journal of Combinatorial Theory 21 (1976) 118-123.

[71] Williams, H. P., Logical problems and integer programming, Bulletin of the Institute of

Mathematics and its Implications 13 (1977) 18-20.

[72] Williams, H. P., Linear and integer programming applied to the propositional calculus,
International Journal of Systems Research and Information Science 2 (1987) 81-100.

[73] Williams, H. P., An alternative explanation of disjunctive formulations, European Journal

of Operational Research 72 (1994) 200-203.

[74] Williams, H. P., Logic applied to integer programming and integer programming applied
to logic, European Journal of Operational Research 81 (1995) 605-616.

[75] Wilson, J. M., Compact normal forms in propositional logic and integer programming
formulations, Computers and Operations Research 90 (1990) 309-314.

[76] Wilson, J. M., Generating cuts in integer programming with families of specially ordered
sets, European Journal of Operational Research 46 (1990) 101-108.

[77] Wilson, J. M., A note on logic cuts and valid inequalities for certain standard (0-1)
integer programs, manuscript, Loughborough University Business School, Loughborough,
Leicestershire LZE11 3TU, U.K. (1995).

45

