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Abstract 

 
In the multilevel generalized assignment problem (MGAP) agents can perform tasks at 
more than one efficiency level. Important manufacturing problems, such as lot sizing, can 
be easily formulated as MGAPs; however, the large number of variables in the related 0-
1 integer program makes it hard to find optimal solutions to these problems, even when 
using powerful commercial optimization packages. The MGAP includes a set of 
knapsack constraints, one per agent, that can be useful for generating simple logical 
constraints or logic cuts. We exploit the fact that logic cuts can be generated in linear 
time and can be easily added to the model before solving it with classical branch and 
bound methodology. We generate all contiguous 1-cuts for every knapsack in large 
MGAP’s problems and report the effect of adding these cuts in our experimental results.  
 
Keywords: Branch and Bound, Generalized Assignment Problem, lot sizing, knapsack 
constraints, logic cuts. 
 
1. Introduction 
 
The multilevel generalized assignment problem (MGAP) was first described by Glover, 
Hultz, and Klingman (1979) in the context of large-scale task allocation in a major 
manufacturing firm. The same problem was addressed later by Laguna, et al (1995), who 
tackled the problem with a tabu search procedure that employed ejection chains to define 
neighborhoods of effective moves without significantly increasing the computational 
effort. To the best of our knowledge, the MGAP has not been addressed anywhere else in 
the literature. 
 
A considerably large body of literature, however, exists for the classical Generalized 
Assignment Problem (GAP). A sample of exact methods is Ross and Soland (1975), 
Martello and Toth (1981), Fisher, Jaikumar and Van Wassenhove (1986), and Guignard 
and Rosenwein (1989). A survey by Cattrysse and Van Wassenhove (1992) provides a 
comprehensive examination of most of these methods.  
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The classical GAP consists of of assigning n tasks to m agents. Each task j must be 
assigned to one and only one agent i. Each agent i has a limited amount bi of a single 
resource. An agent i may have more than one task assigned to it, but the sum of the 
resource requirements for these tasks must not exceed bi. The resource requirements of a 
particular task depend on the agent to which the task is assigned, and they are denoted by 
aij (i.e., the resources used by task j assigned to agent i). The cost of assigning task j to 
agent i is represented by cij 
 
In addition to the exact procedures, researchers have developed heuristics for the GAP. 
Cattrysse, et al. (1994) developed a heuristic based on set partitioning, Amini (1995) 
reported results of a hybrid heuristic that combines two previous heuristics the GAP and 
the Variable-Depth-Search, Lorena and Narciso (1996) used a heuristic based on relaxing 
an IP formulation, and Chu and Beasley (1997) and Wilson (1997) utilized genetic 
algorithms. Even though these heuristics have been able to obtain high quality solutions 
to problems of medium and large size, their performance has been recently overshadow 
by the emergence of highly effective exact procedures. Savelsbergh (1995) developed a 
Branch and Price algorithm using a column generation approach and Nauss (1999) used 
linear programming cuts, lagrangean relaxation and subgradient optimization to reduce 
the solution time. Both of these procedures are capable of solving problems to optimality, 
which were previously considered insolvable. 
 
The Multilevel Generalized Assignment Problem (MGAP), complicates the classical 
GAP problem, with the introduction of different levels of efficiency associated with each 
agent for performing each task. Now, the n tasks can be assigned to m agents with a 
maximum of l efficiency levels. Each task j must be assigned to one and only one agent i, 
but at a level k. Again, each agent i has a limited amount bi of a single resource and the 
sum of the resource requirements for these tasks must not exceed bi. The resource 
requirements of a particular task depend on the agent and level to which the task is 
assigned, and they are denoted by aijk (i.e., the resources used by task j assigned to agent i 
at level k). Here, the cost of assigning task j to agent i at level k is represented by cijk. In 
real-world problems, the relationship between cost and resource utilization for any agent-
level-task assignment is such that if aijk’ < aijk” then cijk’ > cijk”. The objective of this 
combinatorial optimization problem is to minimize the total assignment cost. A 0-1 
integer programming formulation of the MGAP follows: 

m      n       l 

Minimize  Z(x) = ∑  ∑   ∑   cijk xijk 
                            i = 1 j = 1  k = 1 

                  
m        l 

subject to   ∑   ∑   xijk   = 1  j = 1, …, n (1) 
            i = 1 k = 1 

            
     n           l 

∑ ∑    aijk xijk  ≤  bi  i = 1, …, m (2) 
            j = 1  k = 1           

     xijk ∈ {0,1},    i = 1, …, m 
j = 1, …, n 
k = 1, …, l   
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In this model, the binary variable xijk is defined to be 1 if task j is assigned to agent i at 
the kth level, and 0 otherwise. In the manufacturing application presented by Glover, 
Hultz, and Klingman (1979), the objective is to minimize the combined cost of 
production and inventory holding by determining an optimal product lot size and an 
optimal assignment of production to machines. There is a maximum of l possible lot 
sizes, and the machines work in parallel at different rates and operational costs. Some 
general-purpose machines are capable of producing several (or all) of the products while 
others are more specialized. For this application, cijk represents the combined setup, 
production, and holding cost (per unit time) incurred when product j is assigned to 
machine i using the kth possible lot size. Therefore, for a particular product-machine pair, 
a small lot size results in a large combined cost and vice versa. 
 
The MIP formulation of the MGAP consists of two sets of constraints. Set (1) consists of 
choice constraints, while set (2) consists of knapsack constraints. The knapsack 
constraints can be used to generate simple logical constraints that are similar to those in 
set (1). These simple constraints named logic cuts by Hooker et al (1994), and used 
extensively by Hooker and Osorio (1999) in several applications, have been shown to be 
effective in guiding B&B procedures to optimal solutions of  hard optimization problems. 
They can be generated in linear time and when added to a model they shorten the time 
needed to solve problem instances using classical branch and bound methodology. 
 
Specialized solution methods typically take advantage of the structure of the problem that 
they are trying to solve. One way of exploiting structure in integer programming is to 
identify strong cuts for a particular class of  problems, such as cuts that define facets of 
the convex hull of integer solutions. An analogous approach can be used in logic-based 
methods (see Hooker, 1994). Logic-based methods often provide numerous opportunities 
to exploit structure (Bollapragada, 1995). While the identification of strong polyhedral 
cuts requires analysis of the convex hull (as in Hooker, 1992 a), and this can be a difficult 
task even for relatively simple problems, the identification of logic cuts need not involve 
polyhedral issues. One may be able to state useful logical relationships among integer 
variables in problems whose convex hull is far too complex to analyze (see Hooker  and 
Osorio, 1999). In fact, some 0-1 facet-defining cuts are often discovered even in simple 
problems by first identifying logical relationships and then writing inequalities to capture 
the relationships, while others can be found analyzing the mathematical structure of the 
MIP model. Recently, the declarative use of logic cuts, derived from a knapsack 
constraint in a branch and cut framework to prune the searching tree, was succesfully 
applied by Osorio and Mújica (1999) to location problems. 
 
This paper is organized as follows. Section 2 introduces the definition and properties of 
logic cuts, the characteristics that make knapsack constraints amenable to logic-cut 
generation and the procedures to generate valid cuts. Section 3 describes the 
computational experiments that have been conducted and finally, Section 4 presents the 
conclusions derived from this research. 
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2. Logic Cuts and Knapsack Constraints 
 
According to the definition of Hooker et al. 1994, a logic cut is a constraint on the values 
of the integer variables that does not change the projection of the problem’s epigraph 
onto the space of continuous variables. Furthermore, a logic cut has this property for any 
set of objective function coefficients, provided the integer variables have nonnegative 
coefficients. Logic cuts therefore cut off integer points that are dominated by others.  
 
This definition is partially motivated by the work of Jeroslow (1984), who viewed integer 
variables as artificial variables used solely to define the shape of the epigraph in 
continuous space. From this perspective it is natural to admit cuts that leave the problem 
in continuous space undisturbed even if they cut off feasible solutions in the original 
space. A logic cut for a MILP model has therefore been characterized as an implication of 
the constraint set. Actually any logical formula implied by the constraint set as a whole is 
a logic cut, and a logic cut is true if it satisfies the constraints. A logic cut may be added 
to the problem without changing the optimal solution, but it may exclude feasible 
solutions (see Hooker et al., 1994). 
 
A logic cut can also be seen as an extended clause. Extended clauses of degree k can be 
written as:     

Σ     Lj ≥ k,      
                                                                                         j ∈J 

where every Lj is a literal. Here, the sum is not arithmetic, because only true literals are 
taken into account. They are a useful compromise between arithmetic and logic because 
they express the notions of “at least” and “at most” and can be efficiently processed as 
logical formulas or expressed as binaries inequalities in a declarative form. It is important 
to note that Linear Programming is a stronger inference algorithm for extended clauses 
than unit resolution. For example, LP detects the infeasibility of the following 
inequalities, but unit resolution can do nothing with the corresponding extended clauses: 
 

y1 + y2 + y3 = 2 
(1 - y1) + (1 - y2) + (1 - y3) = 2 

 
No known inference algorithm has exactly the same effect as LP on extended clauses, 
unless one views LP algorithms as inference algorithms.  
 
An intuitive understanding of a problem can suggest logic cuts, both valid and nonvalid, 
even when no further polyhedral cuts are easily identified. The idea of a (possibly 
nonvalid) logic cut was defined by Hooker et al. (1994), who uses process synthesis as an 
example. Other examples include structural design problems in Bollapragada et al 
(1995), and a series of standard 0-1 problems discussed by Wilson  (1990). 
 
Whereas a cut in the traditional sense is an inequality, a logic cut can take the form of any 
restriction on the possible values of the integer variables, whether or not it is expressed as 
an inequality. Logic cuts can therefore be used to prune a search tree even when they are 
not expressed as inequality constraints in an MIP mode. But they can also be imposed as 
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inequalities within an MIP model, in which case they can tighten the linear relaxation and 
cut off fractional solutions as traditional cuts do. 
 
The 0-1 knapsack constraints in set (2) of the problem can be expressed in the form dy=d, 
where each yj∈{0,1). We can process these constraints logically using a complete 
inference algorithm for knapsack constraints developed by Hooker (1992-b). However 
this way of processing knapsack constraints presents difficulties, such as the conversion 
from an inequality constraint into its corresponding logical form. The most 
straightforward conversion is to write it as an equivalent set of logical propositions, but 
the number of propositions can grow exponentially with the number of variables in the 
inequality. Due to these difficulties, knapsack constraints are often used to generate logic 
cuts, in the form of extended inequalities, which can be easily manipulated. The logical 
clauses implied by a knapsack constraint are identical to the well-known “covering 
inequalities” for the constraint, and their derivation is straightforward (see Granot and 
Hammer, 1971).  
 
While it is hard to derive all the extended inequalities implied by a 0-1 knapsack 
constraint, it is easy to derive all contiguous cuts. Consider a 0-1 inequality dy ≥ d for 
which it is assumed, without loss of generality, that d1 ≥ d2 ≥ … ≥ dn  > 0. Note that  if dj 
< 0, its sign is reversed and dj is added to δ. A contiguous cut for dy = d has the form, 

           t + w + k - 1 
Σ     yj ≥ k,     (3) 

                                                                                         j = t 

where k is the degree of the cut and w < n is the “weakness” (with w  = 0 indicating a cut 
that fixes all of its variables). In particular (3) is a t-cut because the first term is yt and it is 
valid if and only if  

               t + k - 1                     n 
Σ     dj  +    Σ      dj < d,   (4) 

                                                                                       j = 1                 t + w + k 

Furthermore, Hooker and Osorio (1999) showed that every t-cut of weakness w for dy ≥ δ 
is implied by a 1-cut of weakness w. Therefore, generate 1-cuts can be equivalent to 
generate all t-cuts in terms of infering values for the binary variables. In order for the 
paper to be self contained, we show in Fig.1 the algorithm developed by Hooker and 
Natraj (1999) that generates the 1-cuts we used for the MGAP problem. These cuts are 
generated in linear time. To illustrate, consider the knapsack constraint 

 
13 y1 + 9 y2 + 8 y3 + 6 y4 + 5 y5 + 3 y6 ≥ 30 

 
This knapsack constraint gives rise to the following cuts, 

y1 + y2 ≥ 1 
y1 + y2 + y3 ≥ 2  
y1 + y2 + y3 + y4 + y5 ≥ 3. 

 
Note that the first cut becomes redundant, once the second one is formulated. 
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Let k = 1, s = Σn
j=1 dj,   klast = 0. 

For j = 1, …, n: 
       Let s = s - dj. 
       If s < δ then 
           While s + dk < δ: 
                 Let s = s + dk,   
                 Let k = k + 1. 
           If k > klast  then 
               Generate the cut y1 +  … + yj ≥ k. 
               Let klast   =  k. 

Fig. 1 An algorithm for generating all 1-cuts for a knapsack constraint  dy ≥ δ  in 
which d1 ≥ d2 ≥ … ≥ dn  > 0. 

 
3. Experimental Results 
 
Optimization algorithms for the classical GAP are generally tested on four classes of 
random problems, referred to as A,B,C and D (see Martello and Toth, 1981; Guignard 
and Rosenwein, 1989; Savelsbergh, 1997 for a detailed definition). Problems A, B and C 
are generated with independently uniform distributions for costs and resources, such that 
individual coefficients for costs and resources are not correlated. This leads to relatively 
easy problems where binary variables with small costs and small resource coefficients 
tend to be equal to 1, while binary variables with large costs and large resource 
coefficients tend to be equal to 0. These problems, even when large (Ross and Soland, 
1975 solved problems with 4000 binary variables), can be solved in small number of 
nodes and consequently small times by commercial optimization packages using 
“generic” branch and bound. Problems type D (first introduced by Martello and Toth, 
1981), inversely correlate individual costs and resources coefficients, yielding 
considerably more difficult problem instances. 
 
Laguna, et al. (1995) developed for MGAP problems a more challenging and structurally 
different random problem generator, labeled E, that draws resource requirements from an 
exponential distribution with the costs coefficients inversely correlated. This probability 
function more accurately captures the disparity among equipment working at several 
levels in actual production facilities, where the setup time for highly specialized 
machines greatly differs from the time taken to prepare general purpose machinery. 
 
The following is a description of the problem generator E used to create the random 
instances of MGAPs tested in this paper. 
 

aijk = 1.0 – 10 ln(Uniform[0,1])   with probability p, and with probability  
1 – p  if arc (i,j,k) is not included. 

cijk = 1000/aijk – 10 Uniform[0,1] 
                  n      l 

bi = max  (0.8 ∑  ∑  aijk ) /m ,  max  ∀ j,k aijk)  
                                               j = 1 k = 1 
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The algorithm for generating the logic cuts was coded in C++ and uses CPLEX 6.5 for 
solving the resulting integer programming problem. We compare our results with the 
results obtained from solving the original integer programming formulation using the 
same CPLEX version. A Pentium Dell (100 MHz, with 32 Mb of RAM) was used for the 
computational work. We chose CPLEX results as a basis for comparison due to the lack 
of an exact algorithm for the MGAP, which to the best of our knowledge does not exist. 
Also because, CPLEX’s latest release includes the generation of covering, clique and 
general upper bound cuts that are effective in solving “hard” optimization problems, 
strongly improving performance from previous versions.  
 
It is interesting to point out that the relationship between the right-hand-sides and the sum 
of the coefficients for every knapsack in an E-generated instance is in the range where the 
contiguous cuts have greater impact due to the tightness of the resulting constraints (see 
Osorio and Mújica [1999]). 
 
The first set of experiments focuses on assessing the performance of the proposed 
methodology on instances of the MGAP with several p-values that preserve the  average 
number of variables in the problem. The objective was to study the impact of logic cuts in 
several combinations of number of tasks, agents, and levels. For these instances we 
reported the same E dataset used by Laguna, et al. (1995). The dataset includes 9 sets of 
10 problems with numbers of agents and levels ranging from 3 to 5, numbers of tasks 
ranging form 20 to 40, and p-values of 1, 0.75, and 0.5.  
 

                                           Number of  Average %saved over 
 p-           Number of        Number of Logic Cuts CPLEX with Logic Cuts 

SET level Tasks Agents Levels Variables  Constraints Added CPU Secs Nodes 

1 1 20 3 5 300 23 59.2 -25.4 56.1 
2 1 20 5 3 300 25 63.6 40.8 82.3 
3 1 20 4 4 320 24 65.8 74 88.9 
4 0.75 25 3 5 281 28 62.6 -13.1 36.5 
5 0.75 25 5 3 281 30 61.8 43.9 87.8 
6 0.75 25 4 4 300 29 65 20.7 72.9 
7 0.5 40 3 5 300 43 79.4 -33.3 30.6 
8 0.5 40 5 3 300 45 73.4 32.3 76 
9 0.5 40 4 4 320 44 80.2 25.9 62.5 

Table 1 Summary results for Laguna, et al. (1995) instances 
 
The average CPU time for solving the instances with logic cuts was less than 1000 
seconds and in the sets 1,4 and 7, where CPLEX performed faster without the cuts, the 
average CPU time was less than 100 seconds. This situation can be explained by the fact 
that the cuts can enlarge the problem size by a factor of 2 or 3, and even if their addition 
always reduces the number of nodes, a solution time advantage cannot always be 
obtained in problems that are solved in very few nodes. Note that problems with a larger 
ratio of agents/levels seem to obtain more reduction in CPU times with the addition of 
logic cuts,  and that the p- level and the number of constraints do not seem to have much 
impact on the solution time. 
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In Table 2, we summarize the results of 9 sets of 10 larger E problems with the number of 
binary variables ranging from 720 to 3600 and a p value of 1. For these instances with 
full matrices, we chose various sizes of the number of tasks, agents and levels, with the 
objective of making a broader test of the merit of using logic cuts. We used 40 tasks for 8 
sets and generated 60 task instances for the 9th set. The number of agents varied between 
7 to 30 and the number of performance levels for each agent ranged between 2 and 4. The 
table includes the average of number of logic cuts added, CPU seconds, and number of 
nodes needed to prove optimality with the proposed methodology. To measure the merit 
of the logic cuts, in the column labeled “# Problems solved NO CUTS”, we show the 
number of problems that CPLEX alone solved to optimality in less than 12 hours. The 
last two columns of Table 2 show the percentage savings in CPU seconds and nodes 
obtained with logic cuts. 
 

      Number of #Problems   Averages with  Average %saved over 

           Number          Number of Logic Cuts Solved      Logic Cuts  CPLEX with Logic Cuts 

SET Tasks Agents Levels Variables  Constraints Added NO CUTS CPU Secs Nodes CPU Secs Nodes 

1 40 9 2 720 49 147 9 913.2 2291 39.16 89.66 
2 40 10 2 800 50 162 6 3228.4 8619 72.02 86.18 
3 40 12 2 960 52 194 5 6718.9 12586 38.79 87.86 
4 40 15 2 1200 55 250 2 4003.9 6212 89.81 96.48 
5 40 20 2 1600 60 1473 9 752.6 1145 43.73 83.94 
6 40 8 3 960 48 177 8 1563.9 3257 10.65 83.37 
7 40 10 3 1200 50 217 6 4008.2 5737 64.91 89.57 
8 40 7 4 1120 47 188 9 558.3 1268 16.84 87.17 
9 60 30 2 3600 90 649 0 8617.4 4445 NA NA 

Table 2 Summary of results for large MGAP instances 
 
Note that while all problems were solved to optimality using logic cuts, CPLEX failed to 
solve 36 out of 90 instances within the 12 hours time limit. We calculate the average 
CPU time in seconds and the number of nodes for examples with logic cuts, using all the 
instances for each set, and the average percentage saved in CPU seconds and number of 
nodes, using only the results of problems solved to optimality with both models. 
 
The CPLEX default parameters were used for both models with one exception. In the 
model with logic cuts we used an up branch first selection at each node. This strategy 
improved the solution time in the model with logic cuts, because of the special structure 
of the logic cuts. However it did not yield the same results in the model without logic 
cuts. We allowed a relative tolerance of 0.0001 on the gap between the best integer 
objective and the objective of the best node remaining. This tolerance is smaller than the 
tolerances used to solve the GAP problems reported in Savelsbergh (1995) and Nauss 
(1999). 
 
It can be observed in Table 2 that the number of binary variables strongly impact the 
CPU seconds needed to solve problems to optimality. In addition to the number of 
variables, there are factors such as the ratio between agents and levels that strongly affect 
the solution time. Instances with smaller ratios of agents/levels yield more accurate logic 
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cuts while the logic cuts addition in problems with smaller ratios of tasks/(agents*levels) 
originate more clique variable elements. In fact the addition of logic cuts in problems 
with a ratio of tasks/(agents*levels) much smaller than one, generate problems that can be 
trivially solved. For ratio values close to one, typically, the number of clique members 
reaches 40% of the variables, making ‘hard’ problems easier to solve when the logic cuts 
are added.  
 
In Table 3, we presented the instances for which CPLEX either could not prove 
optimality or could not reach the optimal solution in more than twelve hours of computer 
time. For this experiment, we used the time needed by our model to reach optimality, as a 
limit in the number of seconds that we allowed the problems to run with CPLEX alone. 
The main objective was to compare the best value that CPLEX alone could reach in the 
same CPU time needed by the model with logic cuts. 
 

  Logic  CPLEX    Logic  CPLEX  
 Example Cuts Optimal Best  Absolute  Example Cuts Optimal Best  Absolute 

SET Number Added Value Found Error SET Number Added Value Found Error 

1 9 154 3320 3324 4 5 9 332 1469 1487 18 
2 1 169 2850 2860 10 6 3 171 3757 3762 5 
 2 161 3326 3328 2  8 174 3377 3377 0 
 3 158 2963 2970 7 7 4 207 2851 2854 3 
 5 163 2855 2866 11  5 222 2597 2605 8 

3 1 185 2693 2705 12  9 218 2733 2736 3 
 2 211 2297 2318 21  10 215 2735 2739 4 
 4 193 2483 2491 8 8 4 186 3678 3688 10 
 5 192 2407 2413 6 9 1 684 1731 1743 12 
 6 197 2820 2846 26  2 649 1935 1946 11 

4 1 245 1981 1990 9  3 661 1919 1919 0 
 2 267 1720 1749 29  4 631 1983 1999 16 
 3 251 1869 1869 0  5 617 2064 2079 15 
 4 243 1933 1938 5  6 662 1819 1821 2 
 5 248 2022 2033 11  7 674 1839 1844 5 
 6 249 1980 1995 15  8 627 2092 2130 38 
 8 261 1654 1658 4  9 644 2064 2092 28 
 9 244 2022 2046 24  10 640 2018 2071 53 

Table 3 Best objective value found for models without logic cuts 
 
Tables 2 and 3 show that without logic cuts, CPLEX could solve only 54 of the 90 
problems tested. Thanks to the logic cuts, the number of nodes was reduced by more than 
80% in all the cases and the average CPU time saved in problems that CPLEX could 
solve in less than 12 hours, is in the range of 10.65% to 89.81%. Table 3 also shows the 
absolute difference between the solution found by CPLEX with and without the logic 
cuts. Note that out of the 54 problems for which the model without logic cuts could not 
prove optimality, only in 3 instances the optimal solution had been found within the time 
limit. 
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In our final experiment we used the model with logic cuts to obtain the optimal solution 
to a real-world lot sizing problem. The problem is to find the optimal lot sizes for 30 jobs 
that are to be processed on 7 machines with equal capacity of 2106 units. Each job may 
be processed in up to 3 different lot sizes. This problem results in an integer 
programming formulation with 338 binary variables (i.e., the coefficient matrix is 
approximately 54% full) and 37 constraints (see Laguna, et al., 1995 for the complete 
problem data).  
 
The best known solution for this problem, found by Laguna, et al. (1995) using tabu 
search has an objective function value of 691,634. The Logic Cuts added to the problem 
allowed CPLEX to solve the problem in a CPU time of 36 hours, with 1,990,161 nodes, 
and to find a solution with an objective function value of 690,624 with a relative 
optimality tolerance of 0.01. We used CPLEX, with the same tolerance, to solve the 
model without the cuts, but after 18 hours of CPU time, the B&B tree with 2,180,238 was 
consuming 357 Mb and the execution was aborted because the computer was out of 
memory. The best solution before aborting was 691,478, which is much worse than our 
solution. It is interesting to note that even if the tabu search code found the 691,634 
solution in only 120.07 CPU seconds, it was shown that the heuristic could not improve 
this suboptimal value even if allowed to run the same 36 hours. 
 
4. Conclusions 
 
In the course of this research, we have identified that the IP model of the MGAP is a 
suitable framework for the generation of logic cuts from knapsack constraints. The 
desegregation of the variables in the problem leads to the generation of accurate cuts with 
fewer variables. The contiguous cuts used in the MILP model resulted in a large 
reduction in the number of nodes. For small problems, however, the reduction in the 
number of nodes does not always results in a reduction of the solution time. Therefore, 
adding logic cuts to small problems cannot be recommended from the point of view of 
reducing solution time. For large problems, the node reduction pays off, because the time 
grows exponentially with respect to the number of nodes in searching trees. Our results 
confirm that adding contiguous logic cuts to an IP model is an effective way of solving 
large instances of the MGAP.  We have also experimented with the application of the 
contiguous logic cuts to the classical GAP and we concluded that there is no merit in 
adding such cuts. 
 
A byproduct of our research was the ability to find a 99% optimal solution to a real world 
lot sizing problem. The solution found improves upon the previous best known solution 
and is also better than the best found solving the model without the logic cuts. 
 
A promising direction for future research consists of finding effective strategies for 
selecting a subset of the logic cuts instead of adding the entire set. This will yield smaller 
models and in turn further reduce solution time. 
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