
LOGIC CUTS FOR MULTILEVEL GENERALIZED
ASSIGNMENT PROBLEMS

María A. Osorio

School of Computer Science
Autonomous University of Puebla, Puebla 72560, México

aosorio@cs.buap.mx

Manuel Laguna
Leeds School of Business

University of Colorado, Boulder, CO 80309-0419, USA
laguna@colorado.edu

Abstract

In the multilevel generalized assignment problem (MGAP) agents can perform tasks at
more than one efficiency level. Important manufacturing problems, such as lot sizing, can
be easily formulated as MGAPs; however, the large number of variables in the related 0-
1 integer program makes it hard to find optimal solutions to these problems, even when
using powerful commercial optimization packages. The MGAP includes a set of
knapsack constraints, one per agent, that can be useful for generating simple logical
constraints or logic cuts. We exploit the fact that logic cuts can be generated in linear
time and can be easily added to the model before solving it with classical branch and
bound methodology. We generate all contiguous 1-cuts for every knapsack in large
MGAP’s problems and report the effect of adding these cuts in our experimental results.

Keywords: Branch and Bound, Generalized Assignment Problem, lot sizing, knapsack
constraints, logic cuts.

1. Introduction

The multilevel generalized assignment problem (MGAP) was first described by Glover,
Hultz, and Klingman (1979) in the context of large-scale task allocation in a major
manufacturing firm. The same problem was addressed later by Laguna, et al (1995), who
tackled the problem with a tabu search procedure that employed ejection chains to define
neighborhoods of effective moves without significantly increasing the computational
effort. To the best of our knowledge, the MGAP has not been addressed anywhere else in
the literature.

A considerably large body of literature, however, exists for the classical Generalized
Assignment Problem (GAP). A sample of exact methods is Ross and Soland (1975),
Martello and Toth (1981), Fisher, Jaikumar and Van Wassenhove (1986), and Guignard
and Rosenwein (1989). A survey by Cattrysse and Van Wassenhove (1992) provides a
comprehensive examination of most of these methods.

2

The classical GAP consists of of assigning n tasks to m agents. Each task j must be
assigned to one and only one agent i. Each agent i has a limited amount bi of a single
resource. An agent i may have more than one task assigned to it, but the sum of the
resource requirements for these tasks must not exceed bi. The resource requirements of a
particular task depend on the agent to which the task is assigned, and they are denoted by
aij (i.e., the resources used by task j assigned to agent i). The cost of assigning task j to
agent i is represented by cij

In addition to the exact procedures, researchers have developed heuristics for the GAP.
Cattrysse, et al. (1994) developed a heuristic based on set partitioning, Amini (1995)
reported results of a hybrid heuristic that combines two previous heuristics the GAP and
the Variable-Depth-Search, Lorena and Narciso (1996) used a heuristic based on relaxing
an IP formulation, and Chu and Beasley (1997) and Wilson (1997) utilized genetic
algorithms. Even though these heuristics have been able to obtain high quality solutions
to problems of medium and large size, their performance has been recently overshadow
by the emergence of highly effective exact procedures. Savelsbergh (1995) developed a
Branch and Price algorithm using a column generation approach and Nauss (1999) used
linear programming cuts, lagrangean relaxation and subgradient optimization to reduce
the solution time. Both of these procedures are capable of solving problems to optimality,
which were previously considered insolvable.

The Multilevel Generalized Assignment Problem (MGAP), complicates the classical
GAP problem, with the introduction of different levels of efficiency associated with each
agent for performing each task. Now, the n tasks can be assigned to m agents with a
maximum of l efficiency levels. Each task j must be assigned to one and only one agent i,
but at a level k. Again, each agent i has a limited amount bi of a single resource and the
sum of the resource requirements for these tasks must not exceed bi. The resource
requirements of a particular task depend on the agent and level to which the task is
assigned, and they are denoted by aijk (i.e., the resources used by task j assigned to agent i
at level k). Here, the cost of assigning task j to agent i at level k is represented by cijk. In
real-world problems, the relationship between cost and resource utilization for any agent-
level-task assignment is such that if aijk’ < aijk” then cijk’ > cijk”. The objective of this
combinatorial optimization problem is to minimize the total assignment cost. A 0-1
integer programming formulation of the MGAP follows:

m n l

Minimize Z(x) = ∑ ∑ ∑ cijk xijk
 i = 1 j = 1 k = 1

m l

subject to ∑ ∑ xijk = 1 j = 1, …, n (1)
 i = 1 k = 1

 n l

∑ ∑ aijk xijk ≤ bi i = 1, …, m (2)
 j = 1 k = 1

 xijk ∈ {0,1}, i = 1, …, m
j = 1, …, n
k = 1, …, l

3

In this model, the binary variable xijk is defined to be 1 if task j is assigned to agent i at
the kth level, and 0 otherwise. In the manufacturing application presented by Glover,
Hultz, and Klingman (1979), the objective is to minimize the combined cost of
production and inventory holding by determining an optimal product lot size and an
optimal assignment of production to machines. There is a maximum of l possible lot
sizes, and the machines work in parallel at different rates and operational costs. Some
general-purpose machines are capable of producing several (or all) of the products while
others are more specialized. For this application, cijk represents the combined setup,
production, and holding cost (per unit time) incurred when product j is assigned to
machine i using the kth possible lot size. Therefore, for a particular product-machine pair,
a small lot size results in a large combined cost and vice versa.

The MIP formulation of the MGAP consists of two sets of constraints. Set (1) consists of
choice constraints, while set (2) consists of knapsack constraints. The knapsack
constraints can be used to generate simple logical constraints that are similar to those in
set (1). These simple constraints named logic cuts by Hooker et al (1994), and used
extensively by Hooker and Osorio (1999) in several applications, have been shown to be
effective in guiding B&B procedures to optimal solutions of hard optimization problems.
They can be generated in linear time and when added to a model they shorten the time
needed to solve problem instances using classical branch and bound methodology.

Specialized solution methods typically take advantage of the structure of the problem that
they are trying to solve. One way of exploiting structure in integer programming is to
identify strong cuts for a particular class of problems, such as cuts that define facets of
the convex hull of integer solutions. An analogous approach can be used in logic-based
methods (see Hooker, 1994). Logic-based methods often provide numerous opportunities
to exploit structure (Bollapragada, 1995). While the identification of strong polyhedral
cuts requires analysis of the convex hull (as in Hooker, 1992 a), and this can be a difficult
task even for relatively simple problems, the identification of logic cuts need not involve
polyhedral issues. One may be able to state useful logical relationships among integer
variables in problems whose convex hull is far too complex to analyze (see Hooker and
Osorio, 1999). In fact, some 0-1 facet-defining cuts are often discovered even in simple
problems by first identifying logical relationships and then writing inequalities to capture
the relationships, while others can be found analyzing the mathematical structure of the
MIP model. Recently, the declarative use of logic cuts, derived from a knapsack
constraint in a branch and cut framework to prune the searching tree, was succesfully
applied by Osorio and Mújica (1999) to location problems.

This paper is organized as follows. Section 2 introduces the definition and properties of
logic cuts, the characteristics that make knapsack constraints amenable to logic-cut
generation and the procedures to generate valid cuts. Section 3 describes the
computational experiments that have been conducted and finally, Section 4 presents the
conclusions derived from this research.

4

2. Logic Cuts and Knapsack Constraints

According to the definition of Hooker et al. 1994, a logic cut is a constraint on the values
of the integer variables that does not change the projection of the problem’s epigraph
onto the space of continuous variables. Furthermore, a logic cut has this property for any
set of objective function coefficients, provided the integer variables have nonnegative
coefficients. Logic cuts therefore cut off integer points that are dominated by others.

This definition is partially motivated by the work of Jeroslow (1984), who viewed integer
variables as artificial variables used solely to define the shape of the epigraph in
continuous space. From this perspective it is natural to admit cuts that leave the problem
in continuous space undisturbed even if they cut off feasible solutions in the original
space. A logic cut for a MILP model has therefore been characterized as an implication of
the constraint set. Actually any logical formula implied by the constraint set as a whole is
a logic cut, and a logic cut is true if it satisfies the constraints. A logic cut may be added
to the problem without changing the optimal solution, but it may exclude feasible
solutions (see Hooker et al., 1994).

A logic cut can also be seen as an extended clause. Extended clauses of degree k can be
written as:

Σ Lj ≥ k,
 j ∈J

where every Lj is a literal. Here, the sum is not arithmetic, because only true literals are
taken into account. They are a useful compromise between arithmetic and logic because
they express the notions of “at least” and “at most” and can be efficiently processed as
logical formulas or expressed as binaries inequalities in a declarative form. It is important
to note that Linear Programming is a stronger inference algorithm for extended clauses
than unit resolution. For example, LP detects the infeasibility of the following
inequalities, but unit resolution can do nothing with the corresponding extended clauses:

y1 + y2 + y3 = 2
(1 - y1) + (1 - y2) + (1 - y3) = 2

No known inference algorithm has exactly the same effect as LP on extended clauses,
unless one views LP algorithms as inference algorithms.

An intuitive understanding of a problem can suggest logic cuts, both valid and nonvalid,
even when no further polyhedral cuts are easily identified. The idea of a (possibly
nonvalid) logic cut was defined by Hooker et al. (1994), who uses process synthesis as an
example. Other examples include structural design problems in Bollapragada et al
(1995), and a series of standard 0-1 problems discussed by Wilson (1990).

Whereas a cut in the traditional sense is an inequality, a logic cut can take the form of any
restriction on the possible values of the integer variables, whether or not it is expressed as
an inequality. Logic cuts can therefore be used to prune a search tree even when they are
not expressed as inequality constraints in an MIP mode. But they can also be imposed as

5

inequalities within an MIP model, in which case they can tighten the linear relaxation and
cut off fractional solutions as traditional cuts do.

The 0-1 knapsack constraints in set (2) of the problem can be expressed in the form dy=d,
where each yj∈{0,1). We can process these constraints logically using a complete
inference algorithm for knapsack constraints developed by Hooker (1992-b). However
this way of processing knapsack constraints presents difficulties, such as the conversion
from an inequality constraint into its corresponding logical form. The most
straightforward conversion is to write it as an equivalent set of logical propositions, but
the number of propositions can grow exponentially with the number of variables in the
inequality. Due to these difficulties, knapsack constraints are often used to generate logic
cuts, in the form of extended inequalities, which can be easily manipulated. The logical
clauses implied by a knapsack constraint are identical to the well-known “covering
inequalities” for the constraint, and their derivation is straightforward (see Granot and
Hammer, 1971).

While it is hard to derive all the extended inequalities implied by a 0-1 knapsack
constraint, it is easy to derive all contiguous cuts. Consider a 0-1 inequality dy ≥ d for
which it is assumed, without loss of generality, that d1 ≥ d2 ≥ … ≥ dn > 0. Note that if dj
< 0, its sign is reversed and dj is added to δ. A contiguous cut for dy = d has the form,

 t + w + k - 1
Σ yj ≥ k, (3)

 j = t

where k is the degree of the cut and w < n is the “weakness” (with w = 0 indicating a cut
that fixes all of its variables). In particular (3) is a t-cut because the first term is yt and it is
valid if and only if

 t + k - 1 n
Σ dj + Σ dj < d, (4)

 j = 1 t + w + k

Furthermore, Hooker and Osorio (1999) showed that every t-cut of weakness w for dy ≥ δ
is implied by a 1-cut of weakness w. Therefore, generate 1-cuts can be equivalent to
generate all t-cuts in terms of infering values for the binary variables. In order for the
paper to be self contained, we show in Fig.1 the algorithm developed by Hooker and
Natraj (1999) that generates the 1-cuts we used for the MGAP problem. These cuts are
generated in linear time. To illustrate, consider the knapsack constraint

13 y1 + 9 y2 + 8 y3 + 6 y4 + 5 y5 + 3 y6 ≥ 30

This knapsack constraint gives rise to the following cuts,

y1 + y2 ≥ 1
y1 + y2 + y3 ≥ 2
y1 + y2 + y3 + y4 + y5 ≥ 3.

Note that the first cut becomes redundant, once the second one is formulated.

6

Let k = 1, s = Σn
j=1 dj, klast = 0.

For j = 1, …, n:
 Let s = s - dj.
 If s < δ then
 While s + dk < δ:
 Let s = s + dk,
 Let k = k + 1.
 If k > klast then
 Generate the cut y1 + … + yj ≥ k.
 Let klast = k.

Fig. 1 An algorithm for generating all 1-cuts for a knapsack constraint dy ≥ δ in
which d1 ≥ d2 ≥ … ≥ dn > 0.

3. Experimental Results

Optimization algorithms for the classical GAP are generally tested on four classes of
random problems, referred to as A,B,C and D (see Martello and Toth, 1981; Guignard
and Rosenwein, 1989; Savelsbergh, 1997 for a detailed definition). Problems A, B and C
are generated with independently uniform distributions for costs and resources, such that
individual coefficients for costs and resources are not correlated. This leads to relatively
easy problems where binary variables with small costs and small resource coefficients
tend to be equal to 1, while binary variables with large costs and large resource
coefficients tend to be equal to 0. These problems, even when large (Ross and Soland,
1975 solved problems with 4000 binary variables), can be solved in small number of
nodes and consequently small times by commercial optimization packages using
“generic” branch and bound. Problems type D (first introduced by Martello and Toth,
1981), inversely correlate individual costs and resources coefficients, yielding
considerably more difficult problem instances.

Laguna, et al. (1995) developed for MGAP problems a more challenging and structurally
different random problem generator, labeled E, that draws resource requirements from an
exponential distribution with the costs coefficients inversely correlated. This probability
function more accurately captures the disparity among equipment working at several
levels in actual production facilities, where the setup time for highly specialized
machines greatly differs from the time taken to prepare general purpose machinery.

The following is a description of the problem generator E used to create the random
instances of MGAPs tested in this paper.

aijk = 1.0 – 10 ln(Uniform[0,1]) with probability p, and with probability
1 – p if arc (i,j,k) is not included.

cijk = 1000/aijk – 10 Uniform[0,1]
 n l

bi = max (0.8 ∑ ∑ aijk) /m , max ∀ j,k aijk)
 j = 1 k = 1

7

The algorithm for generating the logic cuts was coded in C++ and uses CPLEX 6.5 for
solving the resulting integer programming problem. We compare our results with the
results obtained from solving the original integer programming formulation using the
same CPLEX version. A Pentium Dell (100 MHz, with 32 Mb of RAM) was used for the
computational work. We chose CPLEX results as a basis for comparison due to the lack
of an exact algorithm for the MGAP, which to the best of our knowledge does not exist.
Also because, CPLEX’s latest release includes the generation of covering, clique and
general upper bound cuts that are effective in solving “hard” optimization problems,
strongly improving performance from previous versions.

It is interesting to point out that the relationship between the right-hand-sides and the sum
of the coefficients for every knapsack in an E-generated instance is in the range where the
contiguous cuts have greater impact due to the tightness of the resulting constraints (see
Osorio and Mújica [1999]).

The first set of experiments focuses on assessing the performance of the proposed
methodology on instances of the MGAP with several p-values that preserve the average
number of variables in the problem. The objective was to study the impact of logic cuts in
several combinations of number of tasks, agents, and levels. For these instances we
reported the same E dataset used by Laguna, et al. (1995). The dataset includes 9 sets of
10 problems with numbers of agents and levels ranging from 3 to 5, numbers of tasks
ranging form 20 to 40, and p-values of 1, 0.75, and 0.5.

 Number of Average %saved over
 p- Number of Number of Logic Cuts CPLEX with Logic Cuts

SET level Tasks Agents Levels Variables Constraints Added CPU Secs Nodes

1 1 20 3 5 300 23 59.2 -25.4 56.1
2 1 20 5 3 300 25 63.6 40.8 82.3
3 1 20 4 4 320 24 65.8 74 88.9
4 0.75 25 3 5 281 28 62.6 -13.1 36.5
5 0.75 25 5 3 281 30 61.8 43.9 87.8
6 0.75 25 4 4 300 29 65 20.7 72.9
7 0.5 40 3 5 300 43 79.4 -33.3 30.6
8 0.5 40 5 3 300 45 73.4 32.3 76
9 0.5 40 4 4 320 44 80.2 25.9 62.5

Table 1 Summary results for Laguna, et al. (1995) instances

The average CPU time for solving the instances with logic cuts was less than 1000
seconds and in the sets 1,4 and 7, where CPLEX performed faster without the cuts, the
average CPU time was less than 100 seconds. This situation can be explained by the fact
that the cuts can enlarge the problem size by a factor of 2 or 3, and even if their addition
always reduces the number of nodes, a solution time advantage cannot always be
obtained in problems that are solved in very few nodes. Note that problems with a larger
ratio of agents/levels seem to obtain more reduction in CPU times with the addition of
logic cuts, and that the p- level and the number of constraints do not seem to have much
impact on the solution time.

8

In Table 2, we summarize the results of 9 sets of 10 larger E problems with the number of
binary variables ranging from 720 to 3600 and a p value of 1. For these instances with
full matrices, we chose various sizes of the number of tasks, agents and levels, with the
objective of making a broader test of the merit of using logic cuts. We used 40 tasks for 8
sets and generated 60 task instances for the 9th set. The number of agents varied between
7 to 30 and the number of performance levels for each agent ranged between 2 and 4. The
table includes the average of number of logic cuts added, CPU seconds, and number of
nodes needed to prove optimality with the proposed methodology. To measure the merit
of the logic cuts, in the column labeled “# Problems solved NO CUTS”, we show the
number of problems that CPLEX alone solved to optimality in less than 12 hours. The
last two columns of Table 2 show the percentage savings in CPU seconds and nodes
obtained with logic cuts.

 Number of #Problems Averages with Average %saved over

 Number Number of Logic Cuts Solved Logic Cuts CPLEX with Logic Cuts

SET Tasks Agents Levels Variables Constraints Added NO CUTS CPU Secs Nodes CPU Secs Nodes

1 40 9 2 720 49 147 9 913.2 2291 39.16 89.66
2 40 10 2 800 50 162 6 3228.4 8619 72.02 86.18
3 40 12 2 960 52 194 5 6718.9 12586 38.79 87.86
4 40 15 2 1200 55 250 2 4003.9 6212 89.81 96.48
5 40 20 2 1600 60 1473 9 752.6 1145 43.73 83.94
6 40 8 3 960 48 177 8 1563.9 3257 10.65 83.37
7 40 10 3 1200 50 217 6 4008.2 5737 64.91 89.57
8 40 7 4 1120 47 188 9 558.3 1268 16.84 87.17
9 60 30 2 3600 90 649 0 8617.4 4445 NA NA

Table 2 Summary of results for large MGAP instances

Note that while all problems were solved to optimality using logic cuts, CPLEX failed to
solve 36 out of 90 instances within the 12 hours time limit. We calculate the average
CPU time in seconds and the number of nodes for examples with logic cuts, using all the
instances for each set, and the average percentage saved in CPU seconds and number of
nodes, using only the results of problems solved to optimality with both models.

The CPLEX default parameters were used for both models with one exception. In the
model with logic cuts we used an up branch first selection at each node. This strategy
improved the solution time in the model with logic cuts, because of the special structure
of the logic cuts. However it did not yield the same results in the model without logic
cuts. We allowed a relative tolerance of 0.0001 on the gap between the best integer
objective and the objective of the best node remaining. This tolerance is smaller than the
tolerances used to solve the GAP problems reported in Savelsbergh (1995) and Nauss
(1999).

It can be observed in Table 2 that the number of binary variables strongly impact the
CPU seconds needed to solve problems to optimality. In addition to the number of
variables, there are factors such as the ratio between agents and levels that strongly affect
the solution time. Instances with smaller ratios of agents/levels yield more accurate logic

9

cuts while the logic cuts addition in problems with smaller ratios of tasks/(agents*levels)
originate more clique variable elements. In fact the addition of logic cuts in problems
with a ratio of tasks/(agents*levels) much smaller than one, generate problems that can be
trivially solved. For ratio values close to one, typically, the number of clique members
reaches 40% of the variables, making ‘hard’ problems easier to solve when the logic cuts
are added.

In Table 3, we presented the instances for which CPLEX either could not prove
optimality or could not reach the optimal solution in more than twelve hours of computer
time. For this experiment, we used the time needed by our model to reach optimality, as a
limit in the number of seconds that we allowed the problems to run with CPLEX alone.
The main objective was to compare the best value that CPLEX alone could reach in the
same CPU time needed by the model with logic cuts.

 Logic CPLEX Logic CPLEX
 Example Cuts Optimal Best Absolute Example Cuts Optimal Best Absolute

SET Number Added Value Found Error SET Number Added Value Found Error

1 9 154 3320 3324 4 5 9 332 1469 1487 18
2 1 169 2850 2860 10 6 3 171 3757 3762 5
 2 161 3326 3328 2 8 174 3377 3377 0
 3 158 2963 2970 7 7 4 207 2851 2854 3
 5 163 2855 2866 11 5 222 2597 2605 8

3 1 185 2693 2705 12 9 218 2733 2736 3
 2 211 2297 2318 21 10 215 2735 2739 4
 4 193 2483 2491 8 8 4 186 3678 3688 10
 5 192 2407 2413 6 9 1 684 1731 1743 12
 6 197 2820 2846 26 2 649 1935 1946 11

4 1 245 1981 1990 9 3 661 1919 1919 0
 2 267 1720 1749 29 4 631 1983 1999 16
 3 251 1869 1869 0 5 617 2064 2079 15
 4 243 1933 1938 5 6 662 1819 1821 2
 5 248 2022 2033 11 7 674 1839 1844 5
 6 249 1980 1995 15 8 627 2092 2130 38
 8 261 1654 1658 4 9 644 2064 2092 28
 9 244 2022 2046 24 10 640 2018 2071 53

Table 3 Best objective value found for models without logic cuts

Tables 2 and 3 show that without logic cuts, CPLEX could solve only 54 of the 90
problems tested. Thanks to the logic cuts, the number of nodes was reduced by more than
80% in all the cases and the average CPU time saved in problems that CPLEX could
solve in less than 12 hours, is in the range of 10.65% to 89.81%. Table 3 also shows the
absolute difference between the solution found by CPLEX with and without the logic
cuts. Note that out of the 54 problems for which the model without logic cuts could not
prove optimality, only in 3 instances the optimal solution had been found within the time
limit.

10

In our final experiment we used the model with logic cuts to obtain the optimal solution
to a real-world lot sizing problem. The problem is to find the optimal lot sizes for 30 jobs
that are to be processed on 7 machines with equal capacity of 2106 units. Each job may
be processed in up to 3 different lot sizes. This problem results in an integer
programming formulation with 338 binary variables (i.e., the coefficient matrix is
approximately 54% full) and 37 constraints (see Laguna, et al., 1995 for the complete
problem data).

The best known solution for this problem, found by Laguna, et al. (1995) using tabu
search has an objective function value of 691,634. The Logic Cuts added to the problem
allowed CPLEX to solve the problem in a CPU time of 36 hours, with 1,990,161 nodes,
and to find a solution with an objective function value of 690,624 with a relative
optimality tolerance of 0.01. We used CPLEX, with the same tolerance, to solve the
model without the cuts, but after 18 hours of CPU time, the B&B tree with 2,180,238 was
consuming 357 Mb and the execution was aborted because the computer was out of
memory. The best solution before aborting was 691,478, which is much worse than our
solution. It is interesting to note that even if the tabu search code found the 691,634
solution in only 120.07 CPU seconds, it was shown that the heuristic could not improve
this suboptimal value even if allowed to run the same 36 hours.

4. Conclusions

In the course of this research, we have identified that the IP model of the MGAP is a
suitable framework for the generation of logic cuts from knapsack constraints. The
desegregation of the variables in the problem leads to the generation of accurate cuts with
fewer variables. The contiguous cuts used in the MILP model resulted in a large
reduction in the number of nodes. For small problems, however, the reduction in the
number of nodes does not always results in a reduction of the solution time. Therefore,
adding logic cuts to small problems cannot be recommended from the point of view of
reducing solution time. For large problems, the node reduction pays off, because the time
grows exponentially with respect to the number of nodes in searching trees. Our results
confirm that adding contiguous logic cuts to an IP model is an effective way of solving
large instances of the MGAP. We have also experimented with the application of the
contiguous logic cuts to the classical GAP and we concluded that there is no merit in
adding such cuts.

A byproduct of our research was the ability to find a 99% optimal solution to a real world
lot sizing problem. The solution found improves upon the previous best known solution
and is also better than the best found solving the model without the logic cuts.

A promising direction for future research consists of finding effective strategies for
selecting a subset of the logic cuts instead of adding the entire set. This will yield smaller
models and in turn further reduce solution time.

11

References

Amini, M and M. Racer (1995). “A hybrid heuristic for the generalized assignment

problem”, European Journal of Operational Research, 5:2, 343-350.
Bollapragada, S., O. Ghattas and J. N. Hooker (1995). ”Optimal Design of Truss

Structures by Mixed Logical and Linear programming”, manuscript, Graduate
School of Industrial Administration, Carnegie Mellon University, Pittsburgh.

Cattrysse, D., and L. Van Wassenhove (1990). “A Survey of Algorithms for the
Generalized Assignhment Problem”, European Journal of Operational Research,
46, 84-92.

Cattrysse, D., M. Salomon, and L. Van Wassenhove (1994). “A Set Partitioning Heuristic
for the Generalized Assignment Problem”, European Journal of Operational
Research, 72, 167-174.

Chu, P.C. and J.B. Beasley (1997). “A Genetic Algorithm for the Generalized
Assignment Problem”, Computers and OR, 24, 17-23.

Fisher, M.L., R. Jaikumar, and L.N. Van Wassenhove (1986). “A Multiplier Adjustment
Method for the Generalized Assignment Problem”, Management Science 32:9,
1095-1103

Glover, F., H. Jultz, and D. Klingman (1979). “Improved Computer-Based Planning
Techniques – Part II”, Interfaces, 9:4, 12-20.

Granot, F., and P. L. Hammer (1971). “On the use of boolean functions in 0-1 linear
programming”, Methods of Operations Research, 154-184.

Guignard, M. and M. Rosenwien (1989). “An Improved Dual Based Algorithm for the
Generalized Assignment Problem”, Operations Research, 37:4, 658-663.

Hooker, J. N. (1992 a). “Logical inference and polyhedral projection”, Proceedings,
Computer Science Logic Workshop (CSL’91), Lecture Notes in Computer Science
626, 184-200.

Hooker, J. N. (1992 b). “Generalized resolution for 0-1 linear inequalities”, Annals of
Mathematics and AI 6, 271-286.

Hooker, J.N. (1994). “Logic-based methods for optimization”, in A. Borning, ed.,
Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science 874, 336-349.

Hooker, J.N., H. Yan, I. Grossmann, and R. Raman (1994). “Logic cuts for processing
networks with fixed charges”, Computers and Operations Research 21, 265-279.

Hooker, J.N., and N.R. Natraj (1999). “Solving 0-1 optimization problems with k-tree
relaxation”, in preparation.

Hooker, J.N., and M.A. Osorio (1999). “Mixed Logical/Linear Programming”. Discrete
Applied Mathematics 96-97, 395-442

Jeroslow, R. E., and J. K. Lowe (1984). “Modeling with integer variables”, Mathematical
Programming Studies 22, 167-184.

Jeroslow, R. E. (1987). “Representability in mixed integer programming, I:
Characterization results”, Discrete Applied Mathematics 17, 223-243.

Laguna, M., J.P. Kelly, J.L. González-Velarde, and F. Glover (1995). “Tabu Search for
the Multilevel Generalized Assignment Problem”, European Journal of
Operational Research, 82, 176-189.

12

Lorena, L.A., N. Narciso, and G. Marcelo (1996).”Relaxation heuristics for a
Generalized Assignment Problem”. European Journal of Operational Research.
91:3, 600-607

Martello, S., and P. Toth (1981). “An Algorithm for the Generalized Assignment
Problem”, Proceedings of the 9th IFORS Conference, Hamburg, Germany.

Nauss, R.M. (1999). “Solving the Classical Generalized Assignment Problem”, working
paper, School of Business Administration. U. of Missouri-St. Louis.

Osorio, M. A., and Rosalba Mújica (1999). “Logic Cuts Generation in a Branch and Cut
Framework for Location Problems”. To appear in Investigación Operativa.

Ross,G.T., and R.M. Soland (1975). “A Branch and Bound Algorithm for the
Generalized Assignment Problem”, Mathematical Programming, 8, 91-103.

Savelsbergh, M. (1997). “A Branch-and-Price Algorithm for the Generalized Assignment
Problem”, Operations Research, 45:6, 831-854.

Williams, H.P., and K.I.M. McKinnon (1989). “Constructing Integer Programming
Models by the Predicate Calculus”. Annals of Operations Research, 21, 227-246.

Williams, H.P. (1995). “Logic applied to integer programming and integer programming
applied to logic”, European Journal of Operational Research 81, 605-616.

Wilson, J. M. (1990). “Generating cuts in integer programming with families of specially
ordered sets”, European Journal of Operational Research, 46, 101-108.

