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Abstract. A preprocessing procedure that uses a local guided search defined in 
terms of a neighborhood structure to get a feasible solution (UB) and the Osorio and 
Glover[18, 20] exploiting of surrogate constraints and constraint pairing is applied to 
the traveling salesman problem. The surrogate constraint is obtained by weighting the 
original problem constraints by their associated dual values in the linear relaxation of 
the problem. The objective function is made a constraint less or equal than a feasible 
solution (UB). The surrogate constraint is paired with this constraint to obtain a com-
bined equation where negative variables are replaced by complemented variables and 
the resulting constraint is used to fix variables to zero or one before solving the prob-
lem. 

1   Introduction 

The TSP has received great attention from the operations research and computer 
science communities because is very easy to describe but very hard to solve [2]. The 
problem can be formulated saying that the traveling salesman must visit every city in 
his territory exactly once and then return to the starting point. Given the cost of travel 
between all cities, he should plan his itinerary for a minimum total cost of the entire 
tour.   

Space solution for TSP is the n-cities permutation, n!. Any simple permutation 
is a different solution. The optimum is the permutation that correspond to a travel 
with the minimum cost. The evaluation function is very simple, because we only need 
to add the cost profit associated with each segment in the itinerary, to obtain the total 
cost for that itinerary. 

The TSP is a relatively old problem. It was already documented in 1759, with a 
different name, by Euler. The term ‘traveling salesman’ was first used in 1932 in a 
German book written by a veteran traveling salesman. The TSP, in the way we know 
it now, was introduced by the RAND Corporation in 1948. The Corporation’s reputa-
tion helped to make the TSP a well known and popular problem. The TSP also be-
came popular at that time due to the apparition of linear programming and the at-
tempts to solve combinatorial problems. 

In 1979, it was probed that the TSP is NP-hard, a special kind of NP-complete 
problems (see Garey et al, [1]). All NP problems can be reduced polynomialy to 
them. It means that if one can find a solution in polynomial time to one of them, with 
a deterministic procedure, it may find it for all NP and then, P=NP. Nobody has been 



able to find efficient algorithms for NP-complete problems until now, and nobody has 
demonstrated that such algorithms do not exist.  

The TSP can be symmetric or asymmetric. In the symmetric case, departure and 
return costs are the same and can be represented with an undirected graph. For the 
asymmetric case, the more common one, the departure and return costs are different 
and can only be represented by a directed graph. Because the symmetric problem can 
be seen as a special case of the asymmetric one, this research was directed to the 
asymmetric case and all references to TSP correspond to the asymmetric case.  

The TSP has become a classic problem because it serves to represent a great 
number of applications in real life, as the coloring sequence in textile industry, the 
design of insulating material and optic filters, the impression of electronic circuits, the 
planning of trajectories in robotics and many other examples that can be represented 
using sequences (see Salkin [21]). Besides, it may represent a big number of combi-
natorial problems that cannot be solved in polynomial time and are NP hard. 

The exponential nature of the time needed to solve this problem in an exact way 
has originated, during the last decades, the development of heuristic algorithms to 
approximate its optimal solution (see Gass [2]).  

To relate the experience obtained in this research, we structured the present pa-
per in the following way. In section 2, we present the Integer Programming formula-
tion for TSP. In section 3, we describe the Dual Surrogate Constraint, and the Paired 
Constraint in section 4. In Section 5 we present an example solved with our approach. 
Section 6, shows experimental results and Section 7, the Conclusion.  

2   Integer Programming Formulation 

As we mentioned before, a traveling salesman must visit n cities, each exactly once. 
The distance between every pair of cities ij, denoted by dij (i ≠ j), is known and may 
depend on the direction traveled (i.e., dij does not necessarily equal dji). The problem 
is to find a tour which commences and terminates at the salesman’s home city and 
minimizes the total distance traveled. 

Suppose we label the home city as city 0 and as city n+1. (Then we may think of 
the salesman’s initial location as city 0 and the desired final location as city n+1). 
Also, introduce the zero-one variables xij (i=0,1,…,n, j=1,…,n+1, i ≠ j), where xij = 1 
if the salesman travels from city i to j, and xij = 0 otherwise. To guarantee that each 
city (except city 0) is entered exactly once, we have ∑i=0,n xij = 1  (j=1,…,n+1, i ≠ j). 

Similarly, to ensure that each city (except city n + 1) is left exactly once, we have 
∑j=1,n+1 xij = 1  (i = 0,…,n, i ≠ j). These constraints, however, do not eliminate the 
possibility of subtours or “loops”. One way of eliminating the subtour possibility is to 
add the constraints αi – αj + (n+1) xij ≤ n (i = 0,…,n, j=1,…,n+1, i ≠ j).  

Where αi is a real number associated with city i. To complete the model we should 
minimize the total distance between the cities. An integer programming formulation 
of the traveling salesman problem is to find variables xij and arbitrary real numbers αi 
which  

   



Minimize   ∑     ∑     dij xij 
i=0,n   j=1,n+1 

Subject to    ∑  xij  = 1  (j=1,…,n+1, i ≠ j) 

i=0,n 
 ∑    xij = 1  (i = 0,…,n, i ≠ j) 
j=1,n+1 
αi – αj + (n+1) xij ≤ n (i = 0,…,n, j=1,…,n+1, i ≠ j)   
αi  ≥ 0    (i = 0,…,n+1) 
 xij  ∈ {0,1},    (i = 0,…,n, j=1,…,n+1, i ≠ j) 

 
Where x0,n+1=0 (since xij = 0 for i = j). This formulation originally appeared in 

Tucker [22], and avoids subtours successfully, but enlarge considerable the model 
that now has (n+1)2+2 variables with (n+1)2+n binaries and (n+2)+(n+1)2 constraints.  

3   Dual Surrogate 

As defined by Glover [4], a surrogate constraint is an inequality implied by the con-
straints of an integer program and designed to capture useful information that cannot 
be extracted from the parent constraints individually, but which is nevertheless a 
consequence of their conjunction.  

The integer program can be written as: 
Minimize  cx 
subject to  Ax ≤ b 

0 ≤ x ≤ e 
and   x integer 
Since Ax ≤ b implies b − Ax ≥ 0, we have for a nonnegative weighting vector u 

that u(b − Ax)  ≥ 0 is a surrogate constraint. A value of u is selected which satisfies a 
most useful or a “strongest” surrogate constraint definition as given in Glover[4,5]. It 
has been shown by Glover [5] that u comprises the optimal values of the variables of 
the dual linear program of the corresponding relaxed LP and that the weighting vector 
in a strongest constraint consists of the optimal dual variables of the associated linear 
program. 

Optimality conditions for surrogate duality are the requirements that the surrogate 
multiplier vector u is nonnegative, x is optimal for the surrogate problem, and x is 
feasible for the primal problem. ‘Strong’ optimality conditions add the requirement of 
complementary slackness. A complete derivation of this theory can be seen in Glover 
[5]. The methodology proposed here relies on these fundamental results. 

 
 



4   Paired Constraint 

The main ideas about constraint pairing in integer programming were exposed by 
Hammer et al. [9]. Based on the objective of getting bounds for most variables, the 
strategy is to pair constraints in the original problem to produce bounds for some 
variables. 

Based on the results exposed about surrogate constraints, the dual surrogate con-
straint provides the most useful relaxation of the constraint set, and can be paired with 
the objective function. If we name K = (n+1)2+(n+2), the total number of constraints 
and L = (n+1)2+2 , the total number of variables, the resulting surrogate is:  

 
                   ∑ uk (akl zk )  ≤    ∑ uk bk 

        l = 1,…, L 

   k=1,K                                 k=1,K (1) 

Where uk are the dual values for every surrogate, akl, the coefficient in row k and 
column l, zk the kth variable (it may be xij or αi), bk the kth right hand side. Now, we 
define 

  
                  sl =   ∑ uk (akl zk )                          l = 1,…, L 

                                                      k=1,K (2) 

 Besides, we made the objective function less or equal than a known feasible integer 
solution (UB). This integer solution was obtained using a guided local search defined 
in terms of neighborhood structure, where tour B is a neighbor of tour A and it can be 
obtained from A by specific type of perturbation or move. It takes infinitesimal CPU 
times to get a feasible tour with this procedure [14 ].  

The paired constraint between the surrogate and the objective function will be, 
  

∑ (cl − sl) zl  ≤ UB − ∑ uk bk
 

                                                l=1,L                               k=1,K (3) 

 To be able to use constraint (3) to fix variables in both bounds, all coefficients must 
be positive or zero. We substitute yl=1– zl in the negative coefficients (cl−sl) to get 
positive ones (cl−sl)’ and add the equivalent value in the right hand side. The right 
hand side of the surrogate is the LP optimal solution (LB), and the right hand side of 
this paired constraint becomes the difference between the best known solution, the 
upper bound (UB), and the LP solution, the lower bound (LB). The resultant paired  
constraint used to fix variables to zero or one,  is 

 
∑ (cl−sl) zl  + ∑ (cj−sj)’ yl  ≤  UB −LB 

                           l=1,L,cl−sl ≥0          l=1,L,cl−sl <0 

(4) 

 If coefficients (cl−sl) of zl are greater to the difference (UB-LB), those variables 
must be zero in the integer solution; if the coefficients (cl−sl)’ of yl are greater to the 
same difference, those variables must be one in the integer solution because its com-
plement, yl must be zero. Variables whose coefficients are smaller than the difference 
remain in the problem. Because we depend on the gap UB−LB and LB can not be 
changed because it is the LP continuous relaxed solution of the problem, a better UB 



given by the best integer solution known, can increase the number of integer variables 
fixed. 

5 Example 

We illustrate the procedure in the following example. Table 1 shows the distances for 
a traveling salesman problem with 3 cities.  

Table 1. Distances for the 3-cities example 

From/To 1 2 3 
1 ∞ 26 82 
2 134 ∞ 117 
3 38 13 ∞ 

The Integer Programming formulation for this example is: 

Minimize  26 x12 + 82 x13 + 134 x21 + 117 x23 + 38 x31 + 13 x32 
Subject to x01 + x02 + x03 + x04 = 1  

x12 + x13 + x14 = 1 
x21 + x23 + x24 = 1 
x31 + x32 + x34 = 1 
x01 + x21 + x31 = 1 
x02 + x12 + x32 = 1 
x03 + x13 + x23 = 1 
x04 + x14 + x24 + x34 = 1 
4x01 + α0 – α1 ≤ 3 
4x02 + α0 – α2 ≤ 3 
4x03 + α0 – α3 ≤ 3 
4x04 + α0 – α4 ≤ 3 
4x12 + α1 – α2 ≤ 3 
4x13 + α1 – α3 ≤ 3 
4x14 + α1 – α4 ≤ 3 
4x21 + α2 – α1 ≤ 3 
4x23 + α2 – α3 ≤ 3 
4x24 + α2 – α4 ≤ 3 
4x31 + α3 – α1 ≤ 3 
4x32 + α3 – α2 ≤ 3 
4x34 + α3 – α4 ≤ 3 

          αi  ≥ 0    (i = 0,…,4) 
 xij  ∈ {0,1},    (i = 0,…,3, j=1,…,4, i ≠ j) 

 



The relaxed LP problem substitutes xij  ∈ {0,1} by 0≤ xij≤1. The LP optimal solu-
tion is 64 and the dual values for the constraints (not including the bounds) are: 
ui={-51,0,0,-13,51,26,51,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}. The surrogate constraint, 
the paired constraint and the variables fixed can be seen in Table 2. 

Table 2. Surrogate and Paired Constraints  

 x01 X02 x03 x04 x12 x13 x14 x21 x23 x24 x31 x32 x34  RHS  
cl 0 0 0 0 26 82 0 134 117 0 38 13 0 ≤ 80 UB 
sl 0 -25 0 -51 26 51 0 51 51 0 38 13 -13 ≤ 64 LB 

cl–sl 0 25 0 51 0 31 0 83 66 0 0 0 13 ≤ 16 UB-LB 
xij  0  0  0  0 0      fixed  

6 Experimental Results 

We tested our procedure with 30 instances generated with a random exponential 
distribution that produces specially hard instances [19]. The average values obtained 
for every set of five instances with the same number of cities but generated with dif-
ferent seeds, are reported in Table 3. The problems were solved in Pentium III with 
1066 MHz and 248 MB in RAM. To obtain the LP solution and to solve the problem 
to optimality, we utilized ILOG CPLEX 8.0. The feasible solution used as UB was 
obtained with a guided local search defined in terms of neighborhood structure [16].  

6.1   Hard Problem Generation for TSP 

We developed a generator that produces challenging TSP problems. Following the 
ideas presented in Osorio and Glover [19], our approach uses independently exponen-
tial distributions over a wide range to generate the distances between the cities. This 
kind of instances takes at least 10 times the number of CPU seconds and 100 times 
the number of nodes in the searching tree, required for CPLEX to get optimality than 
the instances generated with a random uniformly distribution.  

The problem generator used to create the random instances of TSPs is designed as 
follows.  The distances between the cities,  dij, are integer numbers drawn from the 
exponential distribution dij=1.0–1000 ln(U(0,1)).  
 
Table 3. Results for Hard Instances 

Fixed % Fixed % Rel.Dif Number 
of Cities 

Best 
Known  Variables Variables between Soln’s 

Optimal 
Solution 

10 1696 57.8 51.88 7.17 1582 
20 2321 174.4 37.67 20.62 1924 
30 3095 205.8 20.72 58.78 1949 



7 Conclusions 

Our procedure is a very easy way to fix binary variables to their bounds in TSP 
instances. It can be seen as an effective preprocessing that reduces the binary number 
of variables to be fixed in a searching tree. The procedure is simple and utilizes a 
local guided search defined in terms of neighborhood structure to get a feasible tour 
and surrogate analysis with results from the solution of the LP relaxed problem. The 
results obtained shows that a percentage of variables can be fixed in a short amount 
of time for many different instances. 
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